论文标题
协变量自适应随机分析的回归分析:强大而有效的推理观点
Regression analysis for covariate-adaptive randomization: A robust and efficient inference perspective
论文作者
论文摘要
线性回归可以说是最基本的统计模型。然而,尽管是普通的实践,但在随机临床试验中使用的有效性从来都不是清晰的,尤其是在使用分层或协变量随机随机化时。在本文中,我们研究了几种最直观,常用的回归模型,用于估计和推断随机临床试验中的治疗效果。通过允许将回归模型任意规定,我们证明了所有这些基于回归的估计值都可以稳健地估计治疗效果,尽管效率可能不同。我们还提出了一致的非参数差异估计器,并将其性能与基于模型的方差估计器的性能进行比较,这些方差估计量很容易在标准统计软件中获得。根据结果并考虑了理论效率和实际可行性,我们提出建议,以有效利用各种情况下的回归。对于平等分配,与通常的普通最多方差估计器一起,将回归调整用于层协变量和其他基线协变量(如果有)。对于不平等的分配,应使用我们提出的方差估计器,并使用通过治疗相互作用进行治疗相互作用的回归。这些建议适用于简单和分层的随机化和最小化等。我们希望这项工作有助于阐明和促进随机临床试验中的回归使用。
Linear regression is arguably the most fundamental statistical model; however, the validity of its use in randomized clinical trials, despite being common practice, has never been crystal clear, particularly when stratified or covariate-adaptive randomization is used. In this paper, we investigate several of the most intuitive and commonly used regression models for estimating and inferring the treatment effect in randomized clinical trials. By allowing the regression model to be arbitrarily misspecified, we demonstrate that all these regression-based estimators robustly estimate the treatment effect, albeit with possibly different efficiency. We also propose consistent non-parametric variance estimators and compare their performances to those of the model-based variance estimators that are readily available in standard statistical software. Based on the results and taking into account both theoretical efficiency and practical feasibility, we make recommendations for the effective use of regression under various scenarios. For equal allocation, it suffices to use the regression adjustment for the stratum covariates and additional baseline covariates, if available, with the usual ordinary-least-squares variance estimator. For unequal allocation, regression with treatment-by-covariate interactions should be used, together with our proposed variance estimators. These recommendations apply to simple and stratified randomization, and minimization, among others. We hope this work helps to clarify and promote the usage of regression in randomized clinical trials.