论文标题
Sherrington-Kirkpatrick通过种植的仿射平面
Sum-of-Squares Lower Bounds for Sherrington-Kirkpatrick via Planted Affine Planes
论文作者
论文摘要
平方级(SOS)层次结构是一个半明确编程元算法,可捕获许多优化问题(例如最大$ K $ -CSPS和TENSOR PCA)的最先进的多项式时间保证。另一方面,SOS下限提供了硬度的证据,这与可能无法提供NP固定度的平均案例问题特别相关。 在本文中,我们考虑以下平均情况问题,我们将其称为\ emph {种植的仿射平面}(pap)问题:给定$ m $随机矢量$ d_1,\ ldots,\ ldots,d_m $ in $ \ mathbb {r}^n $,我们可以证明没有vector $ v \ in \ in $ v \ n $ n $ n $ n $ y] $ \ langle v,d_u \ rangle^2 = 1 $?换句话说,我们能否证明$ m $随机向量并非全部包含在两个平行的超重样本中,距离原始距离相等距离?我们证明,对于$ m \ leq n^{3/2-ε} $,具有很高的概率,学位 - $ n^{ω(ε)} $ sos $ sos无法反驳这种向量$ v $的存在。 当向量$ d_1,\ ldots,d_m $从多元正态分布中选择D_M $时,PAP问题等同于证明$ \ Mathbb {r}^m $的随机$ n $二维子空间不包含布尔值。如Mohanty-Raghavendra-Xu [STOC 2020]所示,对于此问题的下限,暗示着在Sherrington-kirkpatrick Hamiltonian上证明能量上限的问题,因此我们的下限暗示了$ n^{ω(ω(ε)} $ sos sos wisterifficity-shimefifical shyserififice shyserife n shy shy shy shyring sherring sherring sherring sherring sherring sherring sherring sherring sherring sherring sherring sherring sherring。
The Sum-of-Squares (SoS) hierarchy is a semi-definite programming meta-algorithm that captures state-of-the-art polynomial time guarantees for many optimization problems such as Max-$k$-CSPs and Tensor PCA. On the flip side, a SoS lower bound provides evidence of hardness, which is particularly relevant to average-case problems for which NP-hardness may not be available. In this paper, we consider the following average case problem, which we call the \emph{Planted Affine Planes} (PAP) problem: Given $m$ random vectors $d_1,\ldots,d_m$ in $\mathbb{R}^n$, can we prove that there is no vector $v \in \mathbb{R}^n$ such that for all $u \in [m]$, $\langle v, d_u\rangle^2 = 1$? In other words, can we prove that $m$ random vectors are not all contained in two parallel hyperplanes at equal distance from the origin? We prove that for $m \leq n^{3/2-ε}$, with high probability, degree-$n^{Ω(ε)}$ SoS fails to refute the existence of such a vector $v$. When the vectors $d_1,\ldots,d_m$ are chosen from the multivariate normal distribution, the PAP problem is equivalent to the problem of proving that a random $n$-dimensional subspace of $\mathbb{R}^m$ does not contain a boolean vector. As shown by Mohanty--Raghavendra--Xu [STOC 2020], a lower bound for this problem implies a lower bound for the problem of certifying energy upper bounds on the Sherrington-Kirkpatrick Hamiltonian, and so our lower bound implies a degree-$n^{Ω(ε)}$ SoS lower bound for the certification version of the Sherrington-Kirkpatrick problem.