论文标题

超载罚款下的最佳负载平衡需求分配

Optimal Load Balanced Demand Distribution under Overload Penalties

论文作者

Ramnath, Sarnath, Gunturi, Venkata M. V.

论文摘要

负载平衡需求分配(LBDD)的输入包括以下组成:(a)一组服务中心; (b)一组需求节点; (c)一个成本矩阵,其中包含每个(需求节点,服务中心)对分配成本。此外,每个服务中心还与容量和罚款概念相关联,如果它被超载,则会产生。鉴于输入,LBDD问题确定了从N需求顶点到K服务中心集的映射,n比K大得多。目的是确定将以下两个条款的总和最小化的映射:(i)需求单位及其分配的服务中心之间的总成本以及(ii)产生的总罚款。 LBDD的问题具有多种应用。 LBDD问题的实例可以简化为最小成本双目标匹配问题的实例。在不平衡的两分图中,最著名的算法匹配算法可产生O($ n^3k $)的复杂性。本文提出了基于新的分配子空间重新调整方法,该方法使我们能够在不调用匹配或MINCOST流量的情况下表征映射的最佳性。这种方法可以通过时间复杂性$ o(nk^3 +nk^2 log n)$产生最佳解决方案,并且还允许我们在插入和删除下有效地维持最佳分配。

Input to the Load Balanced Demand Distribution (LBDD) consists of the following: (a) a set of service centers; (b) a set of demand nodes and; (c) a cost matrix containing the cost of assignment for each (demand node, service center) pair. In addition, each service center is also associated with a notion of capacity and a penalty which is incurred if it gets overloaded. Given the input, the LBDD problem determines a mapping from the set of n demand vertices to the set of k service centers, n being much larger than k. The objective is to determine a mapping that minimizes the sum of the following two terms: (i) the total cost between demand units and their allotted service centers and, (ii) total penalties incurred. The problem of LBDD has a variety of applications. An instance of the LBDD problem can be reduced to an instance of the min-cost bi-partite matching problem. The best known algorithm for min-cost matching in an unbalanced bipartite graph yields a complexity of O($n^3k$). This paper proposes novel allotment subspace re-adjustment based approach which allows us to characterize the optimality of the mapping without invoking matching or mincost flow. This approach yields an optimal solution with time complexity $O(nk^3 +nk^2 log n)$, and also allows us to efficiently maintain an optimal allotment under insertions and deletions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源