论文标题
Helmholtz方程的杂种raviart-thomas混合不连续的Galerkin方法的最佳收敛分析
An optimal convergence analysis of the hybrid Raviart-Thomas mixed discontinuous Galerkin method for the Helmholtz equation
论文作者
论文摘要
提出了杂交raviart-thomas混合不连续的Galerkin(HRTMDG)方法用于求解Helmholtz方程。通过新的能量规范,我们确定了HRTMDG方法的存在和独特性,并进行了收敛分析。相应的误差估计表明,HRTMDG方法具有最佳的$ l^2 $ - 纳米收敛精度,该准确性与波数无关。
The hybrid Raviart-Thomas mixed discontinuous Galerkin (HRTMDG) method is proposed for solving the Helmholtz equation. With a new energy norm, we establish the existence and uniqueness of the HRTMDG method, and give its convergence analysis. The corresponding error estimate shows that the HRTMDG method has an optimal $L^2$-norm convergence accuracy which is independent of wavenumber.