论文标题
光学定理和不确定的度量
Optical theorem and indefinite metric in $λϕ^4$ delta-theory
论文作者
论文摘要
考虑了一类称为Delta理论的有效领域理论,该理论改善了量子场理论中的紫外线差异。我们专注于具有四分之一的自我相互作用项的标量模型,并通过应用所谓的三角洲处方来构建增量理论。我们使用将拉格朗日对角线的字段变量量化了理论,其中包括标准标量场和幽灵或负标准状态。众所周知,无限期的度量可能导致$ s $ -matrix失去统一。我们研究光学定理,并以一环顺序检查切割方程的有效性,并发现在$ξ^4 $的Delta耦合参数中被抑制了对单位性的侵犯。
A class of effective field theory called delta-theory, which improves ultraviolet divergences in quantum field theory, is considered. We focus on a scalar model with a quartic self-interaction term and construct the delta theory by applying the so-called delta prescription. We quantize the theory using field variables that diagonalize the Lagrangian, which include a standard scalar field and a ghost or negative norm state. As well known, the indefinite metric may lead to the loss of unitary of the $S$-matrix. We study the optical theorem and check the validity of the cutting equations for three processes at one-loop order, and found suppressed violations of unitarity in the delta coupling parameter of the order of $ξ^4$.