论文标题
QED $ _3 $ - 启发的三维形式晶格量规理论而无需微调
QED$_3$-inspired three-dimensional conformal lattice gauge theory without fine-tuning
论文作者
论文摘要
我们基于Qed $ _3 $中的非局部量规动作的自由度构建了一个共形晶格理论,并构建了自由度。该晶格系统显示了量规可观察物中关键的特征,而无需对耦合进行任何微调,并且可以在没有Monte Carlo临界速度降低的情况下进行研究。通过将完全无质量的费米源耦合到晶格量规模型,我们证明了非平凡的异常尺寸是在费米昂双线性中诱导的,具体取决于费米昂的无量音电荷。我们提出了各种fermion双线三分函数的Wilson-Coefficients的原理晶格计算。最后,通过将模型中的费用费用$ q $映射到一个无质量Qed $ _3 $中的风味$ n $,我们指出了低洼的狄拉克频谱的普遍性,并证明了自以为是的证据$ n = 2 $ qed $ _3 $。
We construct a conformal lattice theory with only gauge degrees of freedom based on the induced non-local gauge action in QED$_3$ coupled to large number of flavors $N$ of massless two-component Dirac fermions. This lattice system displays signatures of criticality in gauge observables, without any fine-tuning of couplings and can be studied without Monte Carlo critical slow-down. By coupling exactly massless fermion sources to the lattice gauge model, we demonstrate that non-trivial anomalous dimensions are induced in fermion bilinears depending on the dimensionless electric charge of the fermion. We present a proof-of-principle lattice computation of the Wilson-coefficients of various fermion bilinear three-point functions. Finally, by mapping the charge $q$ of fermion in the model to a flavor $N$ in massless QED$_3$, we point to an universality in low-lying Dirac spectrum and an evidence of self-duality of $N=2$ QED$_3$.