论文标题
基于模型的增强学习
Nonholonomic Yaw Control of an Underactuated Flying Robot with Model-based Reinforcement Learning
论文作者
论文摘要
非语言控制是控制具有路径依赖性状态的非线性系统的候选者。我们研究了一条不足的飞行微型赛车,即离子司法机,该车辆需要在偏航方向上进行非语言控制才能进行完全态度控制。部署分析控制法涉及实质性的工程设计,并且对系统模型中的不准确性敏感。通过对组装和系统动力学的特定假设,我们得出了一个用于离子司法机的偏航控制的谎言括号。为了比较分析控制法所需的重大工程工作,我们在模拟飞行任务中实现了基于数据驱动的模型的增强偏航控制器。我们证明,一个简单的基于模型的增强学习框架可以在几分钟的飞行数据中与无预定义的动态功能相匹配(以偏航速率和选定的操作)与派生的谎言括号控制(以偏航率和选定的作用)匹配。本文表明,基于学习的方法可作为合成非线性控制法律的工具,此前仅通过基于专家的设计可解决。
Nonholonomic control is a candidate to control nonlinear systems with path-dependant states. We investigate an underactuated flying micro-aerial-vehicle, the ionocraft, that requires nonholonomic control in the yaw-direction for complete attitude control. Deploying an analytical control law involves substantial engineering design and is sensitive to inaccuracy in the system model. With specific assumptions on assembly and system dynamics, we derive a Lie bracket for yaw control of the ionocraft. As a comparison to the significant engineering effort required for an analytic control law, we implement a data-driven model-based reinforcement learning yaw controller in a simulated flight task. We demonstrate that a simple model-based reinforcement learning framework can match the derived Lie bracket control (in yaw rate and chosen actions) in a few minutes of flight data, without a pre-defined dynamics function. This paper shows that learning-based approaches are useful as a tool for synthesis of nonlinear control laws previously only addressable through expert-based design.