论文标题

奇异整体操作员的小波表示

Wavelet Representation of Singular Integral Operators

论文作者

Di Plinio, Francesco, Wick, Brett D., Williams, Tyler

论文摘要

本文开发了一种新颖的方法来代表Calderón-Zygmund类型的单数积分运算符,以连续的模型运营商在经典和BI-参数设置中。该表示形式被视为取消或非现实类型的小波投影的有限总和,它们本身就是Calderón-Zygmund操作员。对于已建立的二元核能技术而言,这两种特性都遥不可及。与他们的二元对应物不同,我们的表示反映了正在分析操作员的额外内核平滑度。 我们的代表公式自然而然地导致了一个$ t(1)$定理的新家庭,其平滑度指数与内核平滑度自然相关。在一个参数情况下,我们获得了$ A_2 $定理的Sobolev空间类似物;也就是说,在整个指数中,$ t $的sobolev规范对重量特征的急剧依赖性。在通常不可用的本地平均稀疏支配的情况下,我们获得了最著名的定量$ a_p $估计值,在$ \ max \ {p,p,p,p'\} \ geq 3 $的范围内。

This article develops a novel approach to the representation of singular integral operators of Calderón-Zygmund type in terms of continuous model operators, in both the classical and the bi-parametric setting. The representation is realized as a finite sum of averages of wavelet projections of either cancellative or noncancellative type, which are themselves Calderón-Zygmund operators. Both properties are out of reach for the established dyadic-probabilistic technique. Unlike their dyadic counterparts, our representation reflects the additional kernel smoothness of the operator being analyzed. Our representation formulas lead naturally to a new family of $T(1)$ theorems on weighted Sobolev spaces whose smoothness index is naturally related to kernel smoothness. In the one parameter case, we obtain the Sobolev space analogue of the $A_2$ theorem; that is, sharp dependence of the Sobolev norm of $T$ on the weight characteristic is obtained in the full range of exponents. In the bi-parametric setting, where local average sparse domination is not generally available, we obtain quantitative $A_p$ estimates which are best known, and sharp in the range $\max\{p,p'\}\geq 3$ for the fully cancellative case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源