论文标题

隐私保护分布式处理:指标,界限和算法

Privacy-Preserving Distributed Processing: Metrics, Bounds, and Algorithms

论文作者

Li, Qiongxiu, Gundersen, Jaron Skovsted, Heusdens, Richard, Christensen, Mads Græsbøll

论文摘要

隐私保护分布式处理最近引起了广泛关注。它旨在设计用于以分散方式对网络进行信号处理任务的解决方案,而不会侵犯隐私。可以采用许多算法来解决此问题,例如差异隐私,安全的多律计算以及最近提出的基于分布式优化的子空间扰动。但是,这些算法彼此之间的关系尚未得到充分探索。因此,在本文中,我们首先根据相互信息提出信息理论指标。使用拟议的指标,我们能够比较和关联许多现有众所周知的算法。然后,我们获得了个人隐私的下限,从而洞悉了问题的性质。为了验证上述主张,我们研究了一个具体的示例,并根据不同方面(例如输出实用程序,个人隐私和算法和算法鲁棒性)对损坏当事方的数量进行比较,不仅使用理论分析,还可以使用数值验证。最后,我们讨论并提供针对不同应用程序设计适当算法的原则。

Privacy-preserving distributed processing has recently attracted considerable attention. It aims to design solutions for conducting signal processing tasks over networks in a decentralized fashion without violating privacy. Many algorithms can be adopted to solve this problem such as differential privacy, secure multiparty computation, and the recently proposed distributed optimization based subspace perturbation. However, how these algorithms relate to each other is not fully explored yet. In this paper, we therefore first propose information-theoretic metrics based on mutual information. Using the proposed metrics, we are able to compare and relate a number of existing well-known algorithms. We then derive a lower bound on individual privacy that gives insights on the nature of the problem. To validate the above claims, we investigate a concrete example and compare a number of state-of-the-art approaches in terms of different aspects such as output utility, individual privacy and algorithm robustness against the number of corrupted parties, using not only theoretical analysis but also numerical validation. Finally, we discuss and provide principles for designing appropriate algorithms for different applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源