论文标题

Langevin回归的非线性随机建模

Nonlinear stochastic modeling with Langevin regression

论文作者

Callaham, Jared L., Loiseau, Jean-Christophe, Rigas, Georgios, Brunton, Steven L.

论文摘要

许多以非线性多尺度相互作用为特征的物理系统可以通过将未分辨的自由度视为随机波动来有效地建模。但是,即使已知的显微镜管理方程和定性宏观行为,也通常很难得出与观察结果一致的随机模型。对于诸如湍流之类的系统尤其如此,在这种系统中,扰动的行为不像高斯白噪声,将非马克维亚行为引入动力学。我们使用前向和伴随的Fokker-Planck方程来实现统计一致性,以通过实验数据识别可解释的随机非线性动力学的框架来应对这些挑战。如果langevin方程的形式未知,则简单的稀疏过程可以提供适当的功能形式。我们证明,该方法可以在两个人工示例中有效地学习随机模型:恢复通过彩色噪声强迫强迫的非线性langevin方程,并以相应的一阶分叉法线形式以双孔电势近似粒子的二阶动力学。最后,我们将提出的方法应用于湍流悬崖尾流的实验测量,并表明压力中心的统计行为可以通过非线性状态依赖性噪声驱动的相应层流流的动力学来描述。

Many physical systems characterized by nonlinear multiscale interactions can be effectively modeled by treating unresolved degrees of freedom as random fluctuations. However, even when the microscopic governing equations and qualitative macroscopic behavior are known, it is often difficult to derive a stochastic model that is consistent with observations. This is especially true for systems such as turbulence where the perturbations do not behave like Gaussian white noise, introducing non-Markovian behavior to the dynamics. We address these challenges with a framework for identifying interpretable stochastic nonlinear dynamics from experimental data, using both forward and adjoint Fokker-Planck equations to enforce statistical consistency. If the form of the Langevin equation is unknown, a simple sparsifying procedure can provide an appropriate functional form. We demonstrate that this method can effectively learn stochastic models in two artificial examples: recovering a nonlinear Langevin equation forced by colored noise and approximating the second-order dynamics of a particle in a double-well potential with the corresponding first-order bifurcation normal form. Finally, we apply the proposed method to experimental measurements of a turbulent bluff body wake and show that the statistical behavior of the center of pressure can be described by the dynamics of the corresponding laminar flow driven by nonlinear state-dependent noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源