论文标题

反对:纪念性记忆处理单元的面积受限技术映射框架

CONTRA: Area-Constrained Technology Mapping Framework For Memristive Memory Processing Unit

论文作者

Bhattacharjee, Debjyoti, Chattopadhyay, Anupam, Dutta, Srijit, Ronen, Ronny, Kvatinsky, Shahar

论文摘要

数据密集型应用程序有望直接从内存中的处理平台(例如回忆存储器处理单元)中受益,这些平台允许利用数据位置并执行状态逻辑操作。为此类平台开发设计自动化流是一个具有挑战性且高度相关的研究问题。在这项工作中,我们调查了最小化基于魔术的内存计算平台的任意区域约束下延迟的问题。我们提出了一个端到端区域约束的技术映射框架,Contra。 Contra使用基于查找表(LUT)在横杆阵列上的输入函数的映射来最大化并行操作,并使用新颖的搜索技术在数组中最佳地移动数据。 Contra支持各种格式的基准,以及横杆尺寸作为生成魔术指令的输入。正如我们的实验所证明的那样,对大型基准的反对尺度。 Contra允许将基准映射到比以前任何其他技术所实现的横杆尺寸较小的基准测试,同时允许各种各样的区域取舍。与现有的七种技术映射方法相比,Contra将面积延迟产品的复合度量提高了2.1倍至13.1倍。

Data-intensive applications are poised to benefit directly from processing-in-memory platforms, such as memristive Memory Processing Units, which allow leveraging data locality and performing stateful logic operations. Developing design automation flows for such platforms is a challenging and highly relevant research problem. In this work, we investigate the problem of minimizing delay under arbitrary area constraint for MAGIC-based in-memory computing platforms. We propose an end-to-end area constrained technology mapping framework, CONTRA. CONTRA uses Look-Up Table(LUT) based mapping of the input function on the crossbar array to maximize parallel operations and uses a novel search technique to move data optimally inside the array. CONTRA supports benchmarks in a variety of formats, along with crossbar dimensions as input to generate MAGIC instructions. CONTRA scales for large benchmarks, as demonstrated by our experiments. CONTRA allows mapping benchmarks to smaller crossbar dimensions than achieved by any other technique before, while allowing a wide variety of area-delay trade-offs. CONTRA improves the composite metric of area-delay product by 2.1x to 13.1x compared to seven existing technology mapping approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源