论文标题

跨越线性森林数量

The generalized Turán number of spanning linear forests

论文作者

Zhang, Lin-Peng, Wang, Ligong, Zhou, Jiale

论文摘要

令$ \ mathcal {f} $为图形家庭。图$ g $称为\ textIt {$ \ mathcal {f} $ - free}如果对于任何$ f \ in \ mathcal {f} $中的任何$ f \,则没有$ g $ isomorphic的子图至$ f $。给定图形$ t $和一个图$ \ MATHCAL {F} $,$ \ MATHCAL {F} $的概括是$ \ Mathcal {f} $中$ t $的最大副本数量 - $ n $ vertices上的免费图形,在$ n $ vertices上,$ n $ vertices,$ n $ vertices,由$ ex(n,t,t,t,t,mathcal c}表示)。线性森林是一个图形,其连接的组件都是所有路径或孤立的顶点。令$ \ MATHCAL {l} _ {n,k} $成为所有线性$ n $带有$ k $ edges和$ k^*_ {s,t} $的家族,从$ k_ {s,t} $获得尺寸$ s $的零件$ s $与同一尺寸的列表相同的零件。在本文中,我们确定$ ex(n,k_s,\ Mathcal {l} _ {n,k})$和$ ex(n,k^*_ {s,t},\ Mathcal {l} _ {n,k})$的确切值。另外,当\ textIt {“主机图”}是两部分时,我们研究了此问题的情况。用$ ex_ {bip}表示(n,t,\ mathcal {f})$ $ \ mathcal {f} $中的$ t $的最大副本数量 - 免费的双分式图形,每个部分的大小$ n $。我们确定$ ex_ {bip}(n,k_ {s,t},\ mathcal {l} _ {n,k})$的确切值。我们的证明主要基于转移方法。

Let $\mathcal{F}$ be a family of graphs. A graph $G$ is called \textit{$\mathcal{F}$-free} if for any $F\in \mathcal{F}$, there is no subgraph of $G$ isomorphic to $F$. Given a graph $T$ and a family of graphs $\mathcal{F}$, the generalized Turán number of $\mathcal{F}$ is the maximum number of copies of $T$ in an $\mathcal{F}$-free graph on $n$ vertices, denoted by $ex(n,T,\mathcal{F})$. A linear forest is a graph whose connected components are all paths or isolated vertices. Let $\mathcal{L}_{n,k}$ be the family of all linear forests of order $n$ with $k$ edges and $K^*_{s,t}$ a graph obtained from $K_{s,t}$ by substituting the part of size $s$ with a clique of the same size. In this paper, we determine the exact values of $ex(n,K_s,\mathcal{L}_{n,k})$ and $ex(n,K^*_{s,t},\mathcal{L}_{n,k})$. Also, we study the case of this problem when the \textit{"host graph"} is bipartite. Denote by $ex_{bip}(n,T,\mathcal{F})$ the maximum possible number of copies of $T$ in an $\mathcal{F}$-free bipartite graph with each part of size $n$. We determine the exact value of $ex_{bip}(n,K_{s,t},\mathcal{L}_{n,k})$. Our proof is mainly based on the shifting method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源