论文标题

使用IR-UWB贯穿壁雷达的人类运动状态数据集

A Dataset of Human Motion Status Using IR-UWB Through-wall Radar

论文作者

Zhu, Zhengliang, Yang, Degui, Zhang, Junchao, Tong, Feng

论文摘要

超宽带(UWB)通过壁雷达在非接触式人类信息检测和监测中具有广泛的应用。随着机器学习技术的整合,其潜在的前景包括对医院环境中患者的生理监测以及在家日常监测。尽管已经提出了基于机器学习的UWB通壁雷达的许多目标检测方法,但缺乏开源数据集来评估算法的性能。该发布的数据集是通过脉冲无线电UWB(IR-UWB)通过壁雷达系统测量的。在不同的环境和几个定义的运动状态下测量了三个测试对象。使用呈现的数据集,我们使用卷积神经网络(CNN)提出了一种人类动作态识别方法,给出了详细的数据集分区方法和识别过程流。在训练有素的网络上,测试三种运动状态的数据的识别精度高于99.7%。本文介绍的数据集考虑了一个简单的环境。因此,我们呼吁UWB雷达领域的所有组织合作建立OpenSource数据集,以进一步促进UWB通过壁雷达的发展。

Ultra-wideband (UWB) through-wall radar has a wide range of applications in non-contact human information detection and monitoring. With the integration of machine learning technology, its potential prospects include the physiological monitoring of patients in the hospital environment and the daily monitoring at home. Although many target detection methods of UWB through-wall radar based on machine learning have been proposed, there is a lack of an opensource dataset to evaluate the performance of the algorithm. This published dataset was measured by impulse radio UWB (IR-UWB) through-wall radar system. Three test subjects were measured in different environments and several defined motion statuses. Using the presented dataset, we propose a human-motion-status recognition method using a convolutional neural network (CNN), the detailed dataset partition method and recognition process flow is given. On the well-trained network, the recognition accuracy of testing data for three kinds of motion statuses is higher than 99.7%. The dataset presented in this paper considers a simple environment. Therefore, we call on all organizations in the UWB radar field to cooperate to build opensource datasets to further promote the development of UWB through-wall radar.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源