论文标题
早期解决中微子质量排序的协同和前景
Synergies and Prospects for Early Resolution of the Neutrino Mass Ordering
论文作者
论文摘要
中微子质量排序(MO)的测量是理解粒子物理标准模型的松性风味部门的基本元素。它的确定依赖于$Δm^2_ {31} $和$δm^2_ {32} $的精确度量,使用任何一个中微子真空振荡,例如中等基线反应堆实验所研究的振荡,或物质有效修改的振荡,例如在长基线中环中的中子中性束中的中性纤维中的中性束中的$ $ $ $ $ b)$ b $ b)。尽管今天有MO的指示,但完全解决的MO测量($ \ geq $ 5 $σ$)最有可能等待下一代中微子实验:Juno的独立敏感性为$ \ sim $ 3 $σ$,或LB $ν$ B实验(Dune和Hyper-Kamiokande)。即将到来的大气中微子实验也有望提供宝贵的信息。在这项工作中,我们研究了最早的完整分辨率的可能背景。即使在2028年之前,也可以通过企业解决方案,主要是在Juno和当前一代LB $ν$ B实验(NOVA和T2K)结合下利用真空振荡。由于强大的协同作用增强了整体敏感性,因此这一机会是可能的,其中lb $ν$ b实验的$Δm^2_ {32} $的均等精度被认为是MO最早发现的领先订单术语。我们还发现,物质与真空驱动的振荡结果之间的比较为超出标准模型以外的物理的独特发现潜力。
The measurement of neutrino Mass Ordering (MO) is a fundamental element for the understanding of leptonic flavour sector of the Standard Model of Particle Physics. Its determination relies on the precise measurement of $Δm^2_{31}$ and $Δm^2_{32}$ using either neutrino vacuum oscillations, such as the ones studied by medium baseline reactor experiments, or matter effect modified oscillations such as those manifesting in long-baseline neutrino beams (LB$ν$B) or atmospheric neutrino experiments. Despite existing MO indication today, a fully resolved MO measurement ($\geq$5$σ$) is most likely to await for the next generation of neutrino experiments: JUNO, whose stand-alone sensitivity is $\sim$3$σ$, or LB$ν$B experiments (DUNE and Hyper-Kamiokande). Upcoming atmospheric neutrino experiments are also expected to provide precious information. In this work, we study the possible context for the earliest full MO resolution. A firm resolution is possible even before 2028, exploiting mainly vacuum oscillation, upon the combination of JUNO and the current generation of LB$ν$B experiments (NOvA and T2K). This opportunity is possible thanks to a powerful synergy boosting the overall sensitivity where the sub-percent precision of $Δm^2_{32}$ by LB$ν$B experiments is found to be the leading order term for the MO earliest discovery. We also found that the comparison between matter and vacuum driven oscillation results enables unique discovery potential for physics beyond the Standard Model.