论文标题

独立的矢量分析通过对数二次惩罚的二次最小化

Independent Vector Analysis via Log-Quadratically Penalized Quadratic Minimization

论文作者

Scheibler, Robin

论文摘要

我们提出了一种使用独立矢量分析(IVA)的新算法(BSS)。这是对具有迭代投影(IP)或迭代源转向(ISS)(ISS)的流行基于辅助功能的IVA(Auxiva)的改进。我们介绍了使用调整(IPA)的迭代投影,在该预测中,我们更新一个解散过滤器,并沿其当前方向共同调整所有其他来源。每个更新都涉及解决一个非凸的最小化问题,该问题我们称其对数二次惩罚的二次最小化(LQPQM),我们认为我们认为这是这项工作以外的有趣的。在一般情况下,我们表明其全局最小值对应于单变量函数的最大根,让人联想到修改的特征值问题。我们提出了一个基于牛顿 - 拉夫森(Newton-Raphson)的简单程序,以有效地计算它。数值实验证明了该方法的有效性。首先,我们表明它有效地降低了替代函数的值。在有关合成混合物的进一步实验中,我们研究了找到真正的分解矩阵和收敛速度的概率。我们表明,所提出的方法结合了高成功率和快速收敛。最后,我们验证了回响盲目的言语分离任务的表现。我们发现,所有基于Auxiva的方法在声学BSS指标方面的性能相似。但是,auxiva-ipa收敛速度更快。与下一个最佳基于辅助的方法相比,我们的运行时间速度高达8.5倍,具体取决于通道数量和信噪比(SNR)。

We propose a new algorithm for blind source separation (BSS) using independent vector analysis (IVA). This is an improvement over the popular auxiliary function based IVA (AuxIVA) with iterative projection (IP) or iterative source steering (ISS). We introduce iterative projection with adjustment (IPA), where we update one demixing filter and jointly adjust all the other sources along its current direction. Each update involves solving a non-convex minimization problem that we term log-quadratically penalized quadratic minimization (LQPQM), that we think is of interest beyond this work. In the general case, we show that its global minimum corresponds to the largest root of a univariate function, reminiscent of modified eigenvalue problems. We propose a simple procedure based on Newton-Raphson to efficiently compute it. Numerical experiments demonstrate the effectiveness of the proposed method. First, we show that it efficiently decreases the value of the surrogate function. In further experiments on synthetic mixtures, we study the probability of finding the true demixing matrix and convergence speed. We show that the proposed method combines high success rate and fast convergence. Finally, we validate the performance on a reverberant blind speech separation task. We find that all the AuxIVA-based methods perform similarly in terms of acoustic BSS metrics. However, AuxIVA-IPA converges faster. We measure up to 8.5 times speed-up in terms of runtime compared to the next best AuxIVA-based method, depending on the number of channels and the signal-to-noise ratio (SNR).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源