论文标题

通过歧视流传播的无监督域的适应

Unsupervised Domain Adaptation via Discriminative Manifold Propagation

论文作者

Luo, You-Wei, Ren, Chuan-Xian, Dai, Dao-Qing, Yan, Hong

论文摘要

无监督的域适应性可有效利用从标记的源域到未标记的目标域的丰富信息。尽管深度学习和对抗性策略在功能的适应性方面取得了重大突破,但还有两个问题需要进一步研究。首先,目标域上的硬分配伪标签是任意和容易出错的,直接应用它们可能会破坏内在的数据结构。其次,对深度学习的批次培训限制了全球结构的表征。在本文中,提出了一个Riemannian流形学习框架,以同时实现可转移性和可区分性。对于第一个问题,该框架通过软标签在目标域上建立了概率的判别标准。基于预先构建的原型,该标准扩展到第二期的全局近似方案。采用了多种度量对齐方式与嵌入空间兼容。不同对齐指标的理论误差范围是用于建设性指导的。所提出的方法可用于解决一系列域适应问题的变体,包括香草和部分设置。已经进行了广泛的实验来研究该方法,比较研究表明了歧视性歧管学习框架的优越性。

Unsupervised domain adaptation is effective in leveraging rich information from a labeled source domain to an unlabeled target domain. Though deep learning and adversarial strategy made a significant breakthrough in the adaptability of features, there are two issues to be further studied. First, hard-assigned pseudo labels on the target domain are arbitrary and error-prone, and direct application of them may destroy the intrinsic data structure. Second, batch-wise training of deep learning limits the characterization of the global structure. In this paper, a Riemannian manifold learning framework is proposed to achieve transferability and discriminability simultaneously. For the first issue, this framework establishes a probabilistic discriminant criterion on the target domain via soft labels. Based on pre-built prototypes, this criterion is extended to a global approximation scheme for the second issue. Manifold metric alignment is adopted to be compatible with the embedding space. The theoretical error bounds of different alignment metrics are derived for constructive guidance. The proposed method can be used to tackle a series of variants of domain adaptation problems, including both vanilla and partial settings. Extensive experiments have been conducted to investigate the method and a comparative study shows the superiority of the discriminative manifold learning framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源