论文标题
用硅碳钨纳米线选择性超材料吸收器增强太阳能热能转化
Enhancing Solar Thermal Energy Conversion with Silicon-cored Tungsten Nanowire Selective Metamaterial Absorbers
论文作者
论文摘要
这项工作通过实验研究了硅碳酸钨纳米线的选择性超材料吸收器,以增强太阳能能量收集,这简单地通过将薄钨层涂在商业硅纳米线邮票上而形成。扫描电子显微镜用于表征钨沉积之前和之后的形态变化,同时进行光谱法以测量从太阳能光谱到红外范围的宽波长范围内的光谱吸收性(或发射)。结果表明,钨纳米线吸收剂与硅纳米线几乎相同的总太阳吸收率在0.85左右,但总发射率大大降低至0.18,这可以显着抑制红外排放热损失。实验室规模的太阳热测试设备用于测量1至20个太阳的钨纳米线吸收剂的太阳能热效率,实验表明,由于硅纳米线和黑色吸收剂的出色光谱选择性,其性能提高了。通过详细的传热分析,发现钨纳米线吸收剂在203级高度测试期间在温度下达到41%的实验效率,并在6.3个太阳下停滞的温度为273DEGC。预计在相同温度203级的同一温度下,它的效率将达到74%的效率,而停滞温度为430级,用于实际应用,而没有寄生辐射损失的侧面和底部表面,极大地表现出了硅纳米线和黑人吸收剂的表现。结果将促进新型超材料选择吸收剂的发展,以低成本的太阳能热能系统的低成本。
This work experimentally studies silicon-cored tungsten nanowire selective metamaterial absorber to enhance solar-thermal energy harvesting, simply fabricated by conformally coating a thin tungsten layer onto a commercial silicon nanowire stamp. Scanning electron microscopy is used to characterize the morphology change before and after the tungsten deposition, while optical spectroscopy is carried out to measure the spectral absorptance (or emittance) in the broad wavelength range from solar spectrum to infrared. It is shown that the tungsten nanowire absorber exhibits almost the same total solar absorptance around 0.85 as the silicon nanowire but with greatly reduced total emittance down to 0.18, which could significantly suppress the infrared emission heat loss. A lab-scale solar-thermal test apparatus is used to measure the solar-thermal efficiency of the tungsten nanowire absorbers from 1 up to 20 suns, experimentally demonstrating the improved performance due to excellent spectral selectivity over the silicon nanowire and black absorbers. With detailed heat transfer analysis, it is found that the tungsten nanowire absorber achieves an experimental efficiency of 41% at temperature 203degC during the solar-thermal test with stagnation temperature 273degC under 6.3 suns. It is projected to reach 74% efficiency at same temperature 203degC with stagnation temperature of 430degC for practical application without parasitic radiative losses from side and bottom surfaces, greatly outperforming the silicon nanowire and black absorbers. The results would facilitate the development of novel metamaterial selective absorbers at low cost for highly-efficient solar thermal energy systems.