论文标题

具有仿射反应的量身扩散限制的分数反应 - 分化方程:解决方案,随机路径和应用

Subdiffusion-limited fractional reaction-subdiffusion equations with affine reactions: Solution, stochastic paths, and applications

论文作者

Lawley, Sean D

论文摘要

与正常的扩散相反,没有针对化学物种之间反应的规范模型,而化学物种通过异常的亚扩散移动。实际上,描述反应 - 扩散的介观方程的类型取决于对单个分子的微观行为的微妙假设。此外,介绍模型和微观模型之间的对应关系尚不清楚。在本文中,我们研究了亚延伸限制的模型,该模型是由介质方程定义的,其分数衍生物都应用于运动和反应项。假设反应项是仿射函数,我们表明分数系统的解决方案是将解决方案随机更改为相应的整数阶阶系统的期望。该结果产生了拉普拉斯空间中的分数和整数解决方案之间简单明了的代数关系。然后,我们找到了与此类介质方程相对应的单个分子的微观兰格文描述,并提供了一种计算机模拟方法来生成其随机轨迹。该分析确定了一些精确的微观条件,这些条件决定了这种类型的介观模型是或不合适的。我们将结果应用于细胞生物学的几种情况,尽管细胞环境中的细胞延伸无处不在,但几乎完全通过正常扩散来建模。具体而言,我们考虑了形态梯度形成,迁移率波动和光漂白(FRAP)实验后的荧光恢复模型。我们还将结果应用于分数的普通微分方程。

In contrast to normal diffusion, there is no canonical model for reactions between chemical species which move by anomalous subdiffusion. Indeed, the type of mesoscopic equation describing reaction-subdiffusion depends on subtle assumptions about the microscopic behavior of individual molecules. Furthermore, the correspondence between mesoscopic and microscopic models is not well understood. In this paper, we study the subdiffusion-limited model, which is defined by mesoscopic equations with fractional derivatives applied to both the movement and the reaction terms. Assuming that the reaction terms are affine functions, we show that the solution to the fractional system is the expectation of a random time change of the solution to the corresponding integer order system. This result yields a simple and explicit algebraic relationship between the fractional and integer order solutions in Laplace space. We then find the microscopic Langevin description of individual molecules that corresponds to such mesoscopic equations and give a computer simulation method to generate their stochastic trajectories. This analysis identifies some precise microscopic conditions that dictate when this type of mesoscopic model is or is not appropriate. We apply our results to several scenarios in cell biology which, despite the ubiquity of subdiffusion in cellular environments, have been modeled almost exclusively by normal diffusion. Specifically, we consider subdiffusive models of morphogen gradient formation, fluctuating mobility, and fluorescence recovery after photobleaching (FRAP) experiments. We also apply our results to fractional ordinary differential equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源