论文标题

无限二型编织双gebras及其(CO)模块的二元性

Duality for infinite-dimensional braided bialgebras and their (co)modules

论文作者

Wagner, Elmar

论文摘要

该论文详细介绍了编织代数,山地,双子骨,霍普夫代数及其模块和综合物的二元性。假设存在双重物体,则显示给定的编织方式如何诱导双重物体的兼容编织,以及如何将行动(分别的共同)变成双层colgebra(分别代数)(分别代数)的共同体(分别行动),并强调了编织的bialgebras和它们的编织(Co Co)模型(Co)Module Alge Alge Alge Alge Bras Bras Bras。

The paper presents a detailed description of duality for braided algebras, coalgebras, bialgebras, Hopf algebras and their modules and comodules in the infinite setting. Assuming that the dual objects exist, it is shown how a given braiding induces compatible braidings for the dual objects, and how actions (resp. coactions) can be turned into coactions (resp. actions) of the dual coalgebra (resp. algebra), with an emphasis on braided bialgebras and their braided (co)module algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源