论文标题

大型智能表面带有通道估计开销:可实现的速率和最佳配置

Large Intelligent Surfaces with Channel Estimation Overhead: Achievable Rate and Optimal Configuration

论文作者

Kundu, Neel Kanth, McKay, Matthew R.

论文摘要

大型智能表面(LIS)提出了一种有希望的新技术,用于增强无线通信系统的性能。实现LI的收益需要准确的通道知识,实际上,由于LIS的被动性质,通道估计开销可能很大。在这里,我们研究了LIS辅助的单输出单输出通信系统的可实现速率,这考虑了最小二乘通道估计器的飞行员开销。我们证明存在一个最佳的$ k^{*} $,它通过平衡LIS提供的功率增益和频道估计开销来最大化可实现的速率。我们介绍了$ k^{*} $的分析近似值,基于我们得出的平均可实现速率的分析上限,并研究统计通道和系统参数上$ k^*$的依赖项。

Large intelligent surfaces (LIS) present a promising new technology for enhancing the performance of wireless communication systems. Realizing the gains of LIS requires accurate channel knowledge, and in practice the channel estimation overhead can be large due to the passive nature of LIS. Here, we study the achievable rate of a LIS-assisted single-input single-output communication system, accounting for the pilot overhead of a least-squares channel estimator. We demonstrate that there exists an optimal $K^{*}$, which maximizes achievable rate by balancing the power gains offered by LIS and the channel estimation overhead. We present analytical approximations for $K^{*}$, based on maximizing an analytical upper bound on average achievable rate that we derive, and study the dependencies of $K^*$ on statistical channel and system parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源