论文标题
真实和虚构的边缘状态在堆叠的浮雕蜂窝状晶格中
Real and imaginary edge states in stacked Floquet honeycomb lattices
论文作者
论文摘要
我们提出了一个非热浮标模型,具有真实和想象中的带隙中的拓扑边缘状态。该模型利用了两个堆叠的蜂窝状晶格,它们可以通过四种不同类型的非炎性时间反转对称性相关。实现正确的时间反转对称性为我们提供了两个在真实差距中的反向传播边缘状态,或者在虚构间隙中的单个边缘状态。对边缘的边缘状态允许沿晶格周长进行螺旋传输或手性传输。与之形成鲜明对比的是,我们发现假想差距中的边缘状态不会传播。取而代之的是,它在空间上保持定位,而幅度不断增加。我们的模型非常适合在光子波导晶格中实现这些边缘状态。
We present a non-Hermitian Floquet model with topological edge states in real and imaginary band gaps. The model utilizes two stacked honeycomb lattices which can be related via four different types of non-Hermitian time-reversal symmetry. Implementing the correct time-reversal symmetry provides us with either two counterpropagating edge states in a real gap, or a single edge state in an imaginary gap. The counterpropagating edge states allow for either helical or chiral transport along the lattice perimeter. In stark contrast, we find that the edge state in the imaginary gap does not propagate. Instead, it remains spatially localized while its amplitude continuously increases. Our model is well-suited for realizing these edge states in photonic waveguide lattices.