论文标题

感知水下图像增强,深度学习和身体先验

Perceptual underwater image enhancement with deep learning and physical priors

论文作者

Chen, Long, Jiang, Zheheng, Tong, Lei, Liu, Zhihua, Zhao, Aite, Zhang, Qianni, Dong, Junyu, Zhou, Huiyu

论文摘要

在水下导航和海洋探索领域,水下图像增强是提高以下对象检测任务准确性的预处理步骤。但是,大多数现有的水下图像增强策略倾向于将增强和检测视为两个没有互动的独立模块,而单独优化的实践并不总是有助于水下对象检测任务。在本文中,我们提出了两个感知增强模型,每个模型都使用带有检测知觉者的深层增强模型。检测感知器以增强模型的梯度形式提供了连贯的信息,从而指导增强模型以生成斑块级别的视觉上令人愉悦的图像或检测有利的图像。此外,由于缺乏训练数据,提出了一种融合物理先验和数据驱动的提示的混合水下图像合成模型,以综合训练数据并推广我们对实际水下图像的增强模型。实验结果表明,我们所提出的方法优于现实世界和合成水下数据集的几种最先进方法。

Underwater image enhancement, as a pre-processing step to improve the accuracy of the following object detection task, has drawn considerable attention in the field of underwater navigation and ocean exploration. However, most of the existing underwater image enhancement strategies tend to consider enhancement and detection as two independent modules with no interaction, and the practice of separate optimization does not always help the underwater object detection task. In this paper, we propose two perceptual enhancement models, each of which uses a deep enhancement model with a detection perceptor. The detection perceptor provides coherent information in the form of gradients to the enhancement model, guiding the enhancement model to generate patch level visually pleasing images or detection favourable images. In addition, due to the lack of training data, a hybrid underwater image synthesis model, which fuses physical priors and data-driven cues, is proposed to synthesize training data and generalise our enhancement model for real-world underwater images. Experimental results show the superiority of our proposed method over several state-of-the-art methods on both real-world and synthetic underwater datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源