论文标题
使用密度功能波动理论在隔离城市中的小区域人口预测
Small-area Population Forecast in a Segregated City using Density-Functional Fluctuation Theory
论文作者
论文摘要
关于住房,运输和资源分配的决定都将受益于准确的小区域人口预测。尽管在区域尺度上存在各种经过测试的预测方法,但开发准确的邻里预测仍然是一个挑战,部分原因是住宅选择的复杂驱动因素,从住房政策到社会偏好和经济状况,累积地导致社区尺度严重的隔离。在这里,我们通过将一种称为密度功能波动理论(DFFT)的新型统计物理学方法扩展到多组分时间依赖时间相关的系统,来展示如何预测邻里级人口统计学的动态。特别是,该技术观察到邻里规模的人口统计学的波动,以提取有效的隔离驱动因素。作为演示,我们使用Schelling型隔离模型模拟了一个隔离的城市,并发现DFFT准确地预测了城市规模的人口统计学变化如何降低到块尺度。如果这些结果扩展到实际人口,DFFT可以利用人口数据收集和区域规模预测的最新进展,以改善当前小区域人口的预测。
Decisions regarding housing, transportation, and resource allocation would all benefit from accurate small-area population forecasts. While various tried-and-tested forecast methods exist at regional scales, developing an accurate neighborhood-scale forecast remains a challenge partly due to complex drivers of residential choice ranging from housing policies to social preferences and economic status that cumulatively cause drastic neighborhood-scale segregation. Here, we show how to forecast the dynamics of neighborhood-scale demographics by extending a novel statistical physics approach called Density-Functional Fluctuation Theory (DFFT) to multi-component time-dependent systems. In particular, this technique observes the fluctuations in neighborhood-scale demographics to extract effective drivers of segregation. As a demonstration, we simulate a segregated city using a Schelling-type segregation model, and found that DFFT accurately predicts how a city-scale demographic change trickles down to block scales. Should these results extend to actual human populations, DFFT could capitalize on the recent advances in demographic data collection and regional-scale forecasts to improve upon current small-area population forecasts.