论文标题

小小的扭转组的小组加倍

Small doubling in groups with moderate torsion

论文作者

Lev, Vsevolod F.

论文摘要

我们确定了一个有限的子集$ a $ a $ a abelian组的结构,因为$ | 2a | <3(1-ε)| a | $,$ε> 0 $;也就是说,我们表明$ a $包含在“小”一维坐标进程中,或者在有限亚组的$ε^{ - 1} $ cosets的结合中包含。 边界$ 3(1-ε)| a | $和$ε^{ - 1} $是最好的,因为没有一个不加紧另一个,并且对包含$ a $的coset进程大小的估计值很清晰。 在基础群体是无限循环的情况下,我们的结果将减少到著名的弗莱曼(Freiman)的$(3N-3)$ - 定理;因此,前者可以被视为将后者扩展到任意的阿贝尔群体上,前提是“不涉及太多扭转”。

We determine the structure of a finite subset $A$ of an abelian group given that $|2A|<3(1-ε)|A|$, $ε>0$; namely, we show that $A$ is contained either in a "small" one-dimensional coset progression, or in a union of fewer than $ε^{-1}$ cosets of a finite subgroup. The bounds $3(1-ε)|A|$ and $ε^{-1}$ are best possible in the sense that none of them can be relaxed without tightened another one, and the estimate obtained for the size of the coset progression containing $A$ is sharp. In the case where the underlying group is infinite cyclic, our result reduces to the well-known Freiman's $(3n-3)$-theorem; the former thus can be considered as an extension of the latter onto arbitrary abelian groups, provided that there is "not too much torsion involved".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源