论文标题

对称性保护拓扑阶段中对称分辨的纠缠

Symmetry-resolved entanglement in symmetry-protected topological phases

论文作者

Azses, Daniel, Sela, Eran

论文摘要

对称受保护的拓扑阶段(SPT)在一个维度(1D)的纠缠频谱中具有通用的归化性。在这里,我们在使用协同学理论的对称分辨纠缠(SRE)的框架中制定了这种现象。我们开发了一种通用方法,以在任何维度上计算SPT的纠缠度量,并特别是通过具有广义缺陷的多页面Riemann表面上的离散路径积分。所得路径积分以描述SPTS拓扑作用的群体共体表示。他们的同胞分类允许识别通用的纠缠属性。具体而言,我们证明了由有限的Abelian统一对称性保护的所有一维拓扑阶段,将还原密度基质的等电块分解为对称扇区。

Symmetry protected topological phases (SPTs) have universal degeneracies in the entanglement spectrum in one dimension (1D). Here, we formulate this phenomenon in the framework of symmetry-resolved entanglement (SRE) using cohomology theory. We develop a general approach to compute entanglement measures of SPTs in any dimension and specifically SRE via a discrete path integral on multi-sheet Riemann surfaces with generalized defects. The resulting path integral is expressed in terms of group cocycles describing the topological actions of SPTs. Their cohomology classification allows to identify universal entanglement properties. Specifically, we demonstrate an equi-block decomposition of the reduced density matrix into symmetry sectors, for all 1D topological phases protected by finite Abelian unitary symmetries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源