论文标题

对医学成像中深度学习的回顾:成像特征,技术趋势,具有进度的案例研究以及未来的承诺

A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises

论文作者

Zhou, S. Kevin, Greenspan, Hayit, Davatzikos, Christos, Duncan, James S., van Ginneken, Bram, Madabhushi, Anant, Prince, Jerry L., Rueckert, Daniel, Summers, Ronald M.

论文摘要

自复兴以来,深度学习已被广​​泛用于各种医学成像任务,并在许多医学成像应用中取得了巨大的成功,从而将我们推向了所谓的人工智能(AI)时代。众所周知,AI的成功主要归因于带有单个任务的注释和高性能计算的进步的大数据的可用性。但是,医学成像提出了深度学习方法面临的独特挑战。在本调查文件中,我们首先介绍了医学成像的特征,强调了医学成像中的临床需求和技术挑战,并描述了深度学习中新兴趋势如何解决这些问题。我们涵盖了网络架构,稀疏和嘈杂的标签,联合学习,可解释性,不确定性定量等主题。然后,我们提出了几个案例研究,这些案例研究通常在临床实践中发现,包括数字病理学和胸部,大脑,心血管和腹部成像。我们没有提出详尽的文献调查,而是描述了与这些案例研究应用有关的一些著名的研究重点。我们以讨论和介绍有希望的未来方向的结论。

Since its renaissance, deep learning has been widely used in various medical imaging tasks and has achieved remarkable success in many medical imaging applications, thereby propelling us into the so-called artificial intelligence (AI) era. It is known that the success of AI is mostly attributed to the availability of big data with annotations for a single task and the advances in high performance computing. However, medical imaging presents unique challenges that confront deep learning approaches. In this survey paper, we first present traits of medical imaging, highlight both clinical needs and technical challenges in medical imaging, and describe how emerging trends in deep learning are addressing these issues. We cover the topics of network architecture, sparse and noisy labels, federating learning, interpretability, uncertainty quantification, etc. Then, we present several case studies that are commonly found in clinical practice, including digital pathology and chest, brain, cardiovascular, and abdominal imaging. Rather than presenting an exhaustive literature survey, we instead describe some prominent research highlights related to these case study applications. We conclude with a discussion and presentation of promising future directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源