论文标题
非同性旋转字符串
Nonrelativistic spinning strings
论文作者
论文摘要
我们构建了与$ su(1,2 | 3)$ spin-matrix理论(SMT)$ ads_5 \ times s^5 $中的spin-matrix理论(SMT)限制相对应的非固定旋转字符串解决方案。考虑到$ ads_5 $和$ s^5 $的各种非同性旋转字符串配置,我们在SMT的强耦合方面获得相应的分散关系,在该方面,强耦合($ \ sim \ sim \ sqrt {\ sqrt {\ m mathfrak {g}} $)在bps附近估算了$ limit的限制。我们通过构建三个旋转折叠的字符串配置来明确概括我们的结果,这些旋转的字符串配置沿$ ads_5 $和$ s^5 $沿着$ ads_5 $的两种旋转。我们的分析表明,对频谱的校正在$ ADS_5 $中的NR字符串的长度非微不足道。本文的其余部分实质上展现了$ su(1,2 | 3)$ spin-matrix理论(SMT)$ ads_5 \ times s^5 $与非差异的neumann-rosochatius在1d中的综合模型之间的基本联系。在$ r \ times s^3 $中以及在$ ads_5 $的某些子领域中以两个特定的示例进行了NR旋转字符串,我们表明确实可以使用1D模型估算理论的频谱。
We construct nonrelativistic spinning string solutions corresponding to $ SU(1,2|3) $ Spin-Matrix theory (SMT) limit of strings in $ AdS_5 \times S^5 $. Considering various nonrelativistic spinning string configurations both in $ AdS_5 $ as well as $ S^5 $ we obtain corresponding dispersion relations in the strong coupling regime of SMT where the strong coupling ($ \sim \sqrt{\mathfrak{g}} $) corrections near the BPS bound have been estimated in the slow spinning limit of strings in $ AdS_5 $. We generalize our results explicitly by constructing three spin folded string configurations that has two of its spins along $ AdS_5 $ and one along $ S^5 $. Our analysis reveals that the correction to the spectrum depends non trivially on the length of the NR string in $ AdS_5 $. The rest of the paper essentially unfolds the underlying connection between $ SU(1,2|3) $ Spin-Matrix theory (SMT) limit of strings in $ AdS_5 \times S^5 $ and the nonrelativistic Neumann-Rosochatius like integrable models in 1D. Taking two specific examples of NR spinning strings in $ R \times S^3 $ as well as in certain sub-sector of $ AdS_5 $ we show that similar reduction is indeed possible where one can estimate the spectrum of the theory using 1D model.