论文标题

MIE共振工程在纳米级非线性光学元件中的元壳上粒子

Mie resonance engineering in meta-shell supraparticles for nanoscale nonlinear optics

论文作者

Bahng, Joong Hwan, Jahani, Saman, Montjoy, Douglas, Yao, Timothy, Kotov, Nikolas, Marandi, Alireza

论文摘要

上颗粒是离散的纳米级构建块的协调组件,分为复杂和等级胶体上层建筑。在单个构建块或其批量同行中未观察到此类组件中的整体光学响应。此外,单位构建块的次波长尺寸可以在上膜片中雕刻光学超材料,到目前为止,这已经超出了胶体工程的当前池。这可以导致在具有前所未有的能力来调整这些颗粒的电磁响应的胶体平台上的有效光学特征。在这里,我们介绍并演示了元壳超颗粒(MSP)的纳米光子学,这是一个所有介电胶体上层结构,具有光学的非线性超材料壳构成球形核心。我们表明,超材料壳有助于工程MSP中的MIE共振,从而可以显着增强第二次谐波生成(SHG)。与其构建块相比,我们显示了MSP中第二次谐波生成的几个数量级增强。此外,我们显示的绝对转化效率高达10^-7,远离损坏阈值,为具有低INDEX胶体的SHG设定了新的基准。 MSP提供了适用于化学和生物应用的胶体平台的瞬时波长转换的实用溶液。它们的工程性和可伸缩性有望在具有结构和物质多样性的胶体平台中为非线性纳米光子学提供肥沃的地面。

Supraparticles are coordinated assemblies of discrete nanoscale building blocks into complex and hierarchical colloidal superstructures. Holistic optical responses in such assemblies are not observed in an individual building block or in their bulk counterparts. Furthermore, subwavelength dimensions of the unit building blocks enable engraving optical metamaterials within the supraparticle, which thus far has been beyond the current pool of colloidal engineering. This can lead to effective optical features in a colloidal platform with unprecedented ability to tune the electromagnetic responses of these particles. Here, we introduce and demonstrate the nanophotonics of meta-shell supraparticle (MSP), an all dielectric colloidal superstructure having an optical nonlinear metamaterial shell conformed onto a spherical core. We show that the metamaterial shell facilitates engineering the Mie resonances in the MSP that enable significant enhancement of the second harmonic generation (SHG). We show several orders of magnitude enhancement of second-harmonic generation in an MSP compared to its building blocks. Furthermore, we show an absolute conversion efficiency as high as 10^-7 far from the damage threshold, setting a new benchmark for SHG with low-index colloids. The MSP provides pragmatic solutions for instantaneous wavelength conversions with colloidal platforms that are suitable for chemical and biological applications. Their engineerability and scalability promise a fertile ground for nonlinear nanophotonics in the colloidal platforms with structural and material diversity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源