论文标题
在集体破坏下,福音系统中的纠缠突然死亡
Sudden death of entanglement in fermionic systems under collective decoherence
论文作者
论文摘要
我们在两个相同的费米片的系统中分析了纠缠的动态,并与全球玻色粒环境相互作用,旋转$ 3/2 $。我们诉诸于对所谓的费米子纠缠的适当度量,以量化费米子相关性,并将其动力学与沉浸在同一环境中的一对可区分的量子台进行比较。根据该系统的初始状态,确定了三种类型的定性不同的动态:i)\ textit {不变式制度},对应于属于无逆性子空间(DFS)的初始状态,这些状态在整个演化过程中保持其纠缠和连贯性; ii)\ textit {指数衰减},对应于与DFS的初始状态,并朝着纠缠和连贯性下降指数下降的状态发展; iii)\ textit {纠缠突然死亡},对应于与DF有一些重叠的最初状态,并且表现出更丰富的动力学,尤其是fermionic纠缠的突然死亡,而连贯性则呈指数衰减。我们的分析提供了对相同颗粒的开放系统中纠缠动态的见解,与可区分的派对案例进行了比较,以及在无法区分的特色系统中的无抗性子空间和纠缠突然死亡的存在中。
We analyze the dynamics of entanglement due to decoherence in a system of two identical fermions with spin $3/2$ interacting with a global bosonic environment. We resort to an appropriate measure of the so-called fermionic entanglement to quantify the fermionic correlations, and compare its dynamics with that of a pair of distinguishable qubits immersed in the same environment. According to the system's initial state, three types of qualitatively different dynamics are identified: i) \textit{invariant regime}, corresponding to initial states that belong to a decoherence free subspace (DFS), which maintain invariant their entanglement and coherence throughout the evolution; ii) \textit{exponential decay}, corresponding to initial states orthogonal to the DFS, and evolve towards states whose entanglement and coherence decrease exponentially; iii) \textit{entanglement sudden death}, corresponding to initial states that have some overlap with the DFS and exhibit a richer dynamics leading, in particular, to the sudden death of the fermionic entanglement, while the coherence decays exponentially. Our analysis offers insights into the dynamics of entanglement in open systems of identical particles, into its comparison with the distinguishable-party case, and into the existence of decoherence free subspaces and entanglement sudden death in indistinguishable-fermion systems.