论文标题
无锚的小型多光谱行人检测
Anchor-free Small-scale Multispectral Pedestrian Detection
论文作者
论文摘要
由对齐的视觉光:和热红外(IR)图像对组成的多光谱图像非常适合于自主驾驶或视觉监视等实用应用。此类数据可用于提高行人检测的性能,特别是用于弱照亮,小标准或部分遮挡的实例。当前的最新ART基于更快的R-CNN的变体,因此经过两个阶段:一个具有手工制作的锚固框的提案生成器网络,用于对象本地化和用于验证对象类别的分类网络。在本文中,我们提出了一种在适用的单阶段的无锚基础体系结构中有效,有效地对两种方式的有效多光谱融合的方法。我们旨在学习基于对象中心和规模的行人表示,而不是直接边界框预测。这样,我们既可以简化网络体系结构,又可以实现更高的检测性能,尤其是在遮挡或低对象分辨率下的行人。此外,我们还提供了一项有关适合改善常用增强功能的合适的多光谱数据增强技术的研究。结果表明,我们方法在检测小标准行人方面的有效性。与具有挑战性的KAIST多光谱的行人检测基准相比,我们达到了5.68%的对数平均损失率。 代码:https://github.com/hensoldtoptronicscv/multispectralpedestriandetection
Multispectral images consisting of aligned visual-optical (VIS) and thermal infrared (IR) image pairs are well-suited for practical applications like autonomous driving or visual surveillance. Such data can be used to increase the performance of pedestrian detection especially for weakly illuminated, small-scaled, or partially occluded instances. The current state-of-the-art is based on variants of Faster R-CNN and thus passes through two stages: a proposal generator network with handcrafted anchor boxes for object localization and a classification network for verifying the object category. In this paper we propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture. We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions. In this way, we can both simplify the network architecture and achieve higher detection performance, especially for pedestrians under occlusion or at low object resolution. In addition, we provide a study on well-suited multispectral data augmentation techniques that improve the commonly used augmentations. The results show our method's effectiveness in detecting small-scaled pedestrians. We achieve 5.68% log-average miss rate in comparison to the best current state-of-the-art of 7.49% (25% improvement) on the challenging KAIST Multispectral Pedestrian Detection Benchmark. Code: https://github.com/HensoldtOptronicsCV/MultispectralPedestrianDetection