论文标题
使用LSTM神经网络预测协调的致动交通信号变化时间
Predicting Coordinated Actuated Traffic Signal Change Times using LSTM Neural Networks
论文作者
论文摘要
交通信号下的车辆加速度和减速行动导致燃料和能源消耗水平的显着。绿光最佳速度咨询系统需要可靠的信号切换时间估算,以提高车辆燃油效率。对于启动的信号,很难获得这些估计值,在这种信号中,每个绿色指示的长度都会改变以适应各种交通状况的变化。这项研究详细介绍了一个四步长的短期记忆深度学习的方法,该方法可用于提供合理的切换时间从绿色到红色,反之亦然,同时对缺少数据进行健全。这四个步骤是数据收集,数据准备,机器学习模型调整以及模型测试和评估。模型的输入包括控制器逻辑,信号正时参数,一天中的时间,探测器的交通状态,车辆驱动数据和行人驱动数据。该方法是在北弗吉尼亚州的一个交叉口的数据上应用和评估的。在不同的损耗函数之间进行了比较分析,包括平均误差,平均绝对误差以及LSTM中使用的平均相对误差,并提出了新的损耗函数。结果表明,尽管所提出的损失函数在总体绝对误差值方面优于常规损失函数,但损失函数的选择取决于预测范围。特别是,对于非常短的预测范围的平均相对误差和长期预测范围的平均误差,所提出的损耗函数的表现胜过。
Vehicle acceleration and deceleration maneuvers at traffic signals results in significant fuel and energy consumption levels. Green light optimal speed advisory systems require reliable estimates of signal switching times to improve vehicle fuel efficiency. Obtaining these estimates is difficult for actuated signals where the length of each green indication changes to accommodate varying traffic conditions. This study details a four-step Long Short-Term Memory deep learning-based methodology that can be used to provide reasonable switching time estimates from green to red and vice versa while being robust to missing data. The four steps are data gathering, data preparation, machine learning model tuning, and model testing and evaluation. The input to the models included controller logic, signal timing parameters, time of day, traffic state from detectors, vehicle actuation data, and pedestrian actuation data. The methodology is applied and evaluated on data from an intersection in Northern Virginia. A comparative analysis is conducted between different loss functions including the mean squared error, mean absolute error, and mean relative error used in LSTM and a new loss function is proposed. The results show that while the proposed loss function outperforms conventional loss functions in terms of overall absolute error values, the choice of the loss function is dependent on the prediction horizon. In particular, the proposed loss function is outperformed by the mean relative error for very short prediction horizons and mean squared error for very long prediction horizons.