论文标题
在广告/CFT双重性的均匀弯曲空间中平均的无效条件
The averaged null energy conditions in even dimensional curved spacetimes from AdS/CFT duality
论文作者
论文摘要
我们考虑平均为无效的量子场理论(2和4)维度弯曲的空间中强耦合的量子场理论(ANEC),通过在ADS/CFT二元性的背景下应用No-Bulk-ShortCut原理。在相同的上下文中,但在奇数中,目前的作者先前衍生了一个共形的平均空能状况(CANEC),这是具有一定重量函数的ANEC的一个版本,可用于保形不变性。然而,在偶数二维中,必须处理引力保形异常,这使相关公式比奇数情况更为复杂。在二维中,我们通过应用No-Bulk-ShortCut原理来得出ANEC。在四维中,我们得出了一种不等式,该不平等基本上为ANEC提供了具有权重函数的较低限制。为此,为了获得对引力保形异常的一些几何见解,我们以几何量(例如边界null Geodesics的膨胀和边界几何形状的准局部质量质量的扩展)来表达应力能力公式。我们认为何时获得最低的结合,并讨论何时考虑一个简单的虫孔喉咙的空间紧凑型宇宙的示例,零能量的平均值何时可能为负。
We consider averaged null energy conditions (ANEC) for strongly coupled quantum field theories in even (two and four) dimensional curved spacetimes by applying the no-bulk-shortcut principle in the context of the AdS/CFT duality. In the same context but in odd-dimensions, the present authors previously derived a conformally invariant averaged null energy condition (CANEC), which is a version of the ANEC with a certain weight function for conformal invariance. In even-dimensions, however, one has to deal with gravitational conformal anomalies, which make relevant formulas much more complicated than the odd-dimensional case. In two-dimensions, we derive the ANEC by applying the no-bulk-shortcut principle. In four-dimensions, we derive an inequality which essentially provides the lower-bound for the ANEC with a weight function. For this purpose, and also to get some geometric insights into gravitational conformal anomalies, we express the stress-energy formulas in terms of geometric quantities such as the expansions of boundary null geodesics and a quasi-local mass of the boundary geometry. We argue when the lowest bound is achieved and also discuss when the averaged value of the null energy can be negative, considering a simple example of a spatially compact universe with wormhole throat.