论文标题

模拟量子搜索演变的几何方面

Geometric aspects of analog quantum search evolutions

论文作者

Cafaro, Carlo, Ray, Shannon, Alsing, Paul M.

论文摘要

我们使用Anandan和Aharonov最初提出的几何概念,以表明Farhi-Gutmann时间最佳模拟量子搜索在两个正交量子状态之间的演变的特征是单位效率动力学轨迹在投射Hilbert空间上追溯到。特别是,我们证明这些最佳动力学轨迹是连接量子演化的初始和最终状态的最短的测量路径。此外,我们验证了它们描述的最小不确定性演变是由不平等不平等的不平等现象所指定的,比普通的时间 - 能量不确定性关系更紧密。我们还从提议的Riemannian几何学角度研究了与时间最佳条件的偏差的影响。此外,在指出了我们的几何方法进行量子搜索方法提供的一些身体直观的方面之后,我们提到了一些实际相关的物理见解,这些见解可能从我们的几何分析的应用到更现实的时间依赖时间量子搜索的演变。最后,我们简要讨论了工作的可能扩展,以分析量子计算任务中相关性热轨迹的效率的几何分析。

We use geometric concepts originally proposed by Anandan and Aharonov to show that the Farhi-Gutmann time optimal analog quantum search evolution between two orthogonal quantum states is characterized by unit efficiency dynamical trajectories traced on a projective Hilbert space. In particular, we prove that these optimal dynamical trajectories are the shortest geodesic paths joining the initial and the final states of the quantum evolution. In addition, we verify they describe minimum uncertainty evolutions specified by an uncertainty inequality that is tighter than the ordinary time-energy uncertainty relation. We also study the effects of deviations from the time optimality condition from our proposed Riemannian geometric perspective. Furthermore, after pointing out some physically intuitive aspects offered by our geometric approach to quantum searching, we mention some practically relevant physical insights that could emerge from the application of our geometric analysis to more realistic time-dependent quantum search evolutions. Finally, we briefly discuss possible extensions of our work to the geometric analysis of the efficiency of thermal trajectories of relevance in quantum computing tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源