论文标题

学习图编辑距离通过图神经网络

Learning Graph Edit Distance by Graph Neural Networks

论文作者

Riba, Pau, Fischer, Andreas, Lladós, Josep, Fornés, Alicia

论文摘要

几何深度学习作为处理基于图的表示的新框架的出现逐渐消失了传统方法,以支持全新的方法。在本文中,我们提出了一个新框架,能够将深度度量学习的进步与图表编辑距离的传统近似结合在一起。因此,我们根据几何深度学习的新领域提出了一个有效的图形距离。我们的方法采用传递神经网络的消息来捕获图形结构,因此利用此信息用于距离计算。在两种不同的情况下验证了所提出的图形距离的性能。一方面,用手写单词的图检索〜\ ie〜关键字斑点,与(近似)图编辑距离基准相比,它显示出其出色的性能。另一方面,与最近的基准数据集中的当前最新技术相比,在图形相似性学习方面证明了竞争性结果。

The emergence of geometric deep learning as a novel framework to deal with graph-based representations has faded away traditional approaches in favor of completely new methodologies. In this paper, we propose a new framework able to combine the advances on deep metric learning with traditional approximations of the graph edit distance. Hence, we propose an efficient graph distance based on the novel field of geometric deep learning. Our method employs a message passing neural network to capture the graph structure, and thus, leveraging this information for its use on a distance computation. The performance of the proposed graph distance is validated on two different scenarios. On the one hand, in a graph retrieval of handwritten words~\ie~keyword spotting, showing its superior performance when compared with (approximate) graph edit distance benchmarks. On the other hand, demonstrating competitive results for graph similarity learning when compared with the current state-of-the-art on a recent benchmark dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源