论文标题
石墨烯量子尺寸磁铁连接处的木蛋白的散射
Scattering of magnons at graphene quantum-Hall-magnet junctions
论文作者
论文摘要
通过在单层石墨烯的$ n = 0 $ landau水平中形成的量子孔磁铁(QHM)状态的最近非本地运输研究的激励,我们研究了QHM磁蛋白通过栅极控制的连接的散射,该连接在具有不同的integer填充因子$ν$的状态之间。对于$ν= 1 | -1 | 1 $几何形状,我们发现镁质因接头区域的电势变化而薄弱,并且当连接处缺乏镜像对称性时,散射是手性的。对于$ν= 1 | 0 | 1 $几何形状,其中散点区包含$ν= 0 $ canted抗FiferRomagnet的%,我们发现运动角度超过临界值,运动学约束完全阻止了磁通传输。我们的结果解释了在$ν= 1 | 0 | 1 $情况下观察到的被抑制的非本地电压信号。我们利用我们的理论提出,可以使用$ν= -1 | 1 $交界处产生的山谷波和镁可以使用,以探测整数和分数填充因子的QHM状态的旋转/山谷风味结构。
Motivated by recent non-local transport studies of quantum-Hall-magnet (QHM) states formed in monolayer graphene's $N=0$ Landau level, we study the scattering of QHM magnons by gate-controlled junctions between states with different integer filling factors $ν$. For the $ν=1|-1|1$ geometry we find magnons are weakly scattered by electric potential variation in the junction region, and that the scattering is chiral when the junction lacks a mirror symmetry. For the $ν=1|0|1$ geometry, %in which the scattering region contains a $ν=0$ canted antiferromagnet, we find that kinematic constraints completely block magnon transmission if the incident angle exceeds a critical value. Our results explain the suppressed non-local-voltage signals observed in the $ν=1|0|1$ case. We use our theory to propose that valley-waves generated at $ν=-1|1$ junctions and magnons can be used in combination to probe the spin/valley flavor structure of QHM states at integer and fractional filling factors.