论文标题
置换模化系统中大型2个群集的全球杂智性叛逆者动力学
Global heteroclinic rebel dynamics among large 2-clusters in permutation equivariant systems
论文作者
论文摘要
我们探索$ n $元素的所有排列的对称组$ s_n $下的均等动态。具体而言,我们研究了单参数矢量字段,直至立方顺序,并使用标准的$(N-1)$ - 尺寸不可约为$ s_n $的代表。参数是在整个同步的微不足道1簇平衡处的线性化。 所有平衡都是涉及多达三个簇的集群解决方案。由此产生的全局动力学是梯度类型的:所有有限的解决方案都是群集平衡和它们之间的杂斜轨道。在大型$ n $的极限下,我们详细介绍了众多2群均衡中的杂斜轨道网的详细分析。我们的重点是具有一个小尺寸的叛军群集的三个集群解决方案的全球动态。这些解决方案描述了2个群集状态的相对生长缓慢和衰减。对于$ n \ rightArrow \ infty $,限制杂项Web在2群均衡配置的空间中定义了可集成的\ emph {rebel flow}。我们识别并研究了在这种情况下出现的七个定性截然不同的全球叛军流。 应用程序包括具有全耦合的振荡器和电化学。为了进行插图,我们考虑使用复杂的线性全局耦合的$ n $复杂的Stuart-Landau振荡器之间的同步簇。
We explore equivariant dynamics under the symmetric group $S_N$ of all permutations of $N$ elements. Specifically we study one-parameter vector fields, up to cubic order, which commute with the standard real $(N-1)$-dimensional irreducible representation of $S_N$. The parameter is the linearization at the trivial 1-cluster equilibrium of total synchrony. All equilibria are cluster solutions involving up to three clusters. The resulting global dynamics is of gradient type: all bounded solutions are cluster equilibria and heteroclinic orbits between them. In the limit of large $N$, we present a detailed analysis of the web of heteroclinic orbits among the plethora of 2-cluster equilibria. Our focus is on the global dynamics of 3-cluster solutions with one rebel cluster of small size. These solutions describe slow relative growth and decay of 2-cluster states. For $N\rightarrow\infty$, the limiting heteroclinic web defines an integrable \emph{rebel flow} in the space of 2-cluster equilibrium configurations. We identify and study the seven qualitatively distinct global rebel flows which arise in this setting. Applications include oscillators with all-to-all coupling, and electrochemistry. For illustration we consider synchronization clusters among $N$ complex Stuart-Landau oscillators with complex linear global coupling.