论文标题

优先贝叶斯的优化使用偏度高斯工艺

Preferential Bayesian optimisation with Skew Gaussian Processes

论文作者

Benavoli, Alessio, Azzimonti, Dario, Piga, Dario

论文摘要

优先贝叶斯优化(PBO)处理仅通过偏好判断访问目标函数的优化问题,例如在两个候选解决方案(例如在A/B测试或推荐系统中)之间的“这比”。 PBO的最新方法使用高斯工艺来对偏好函数进行建模和伯努利的可能性,以对观察到的成对比较进行建模。然后,采用Laplace的方法来计算后验推断,尤其是构建适当的采集功能。在本文中,我们证明了偏好函数的真正后验分布是一个偏斜的过程(SkeWGP),具有高度偏斜的成对边缘,因此表明Laplace的方法通常提供非常差的近似值。然后,我们得出了一种有效的方法来计算精确的偏斜后部,并将其用作使用标准采集功能(上可靠的界限等)的PBO代理模型。我们通过在各种实验中说明了我们精确的PBO-SkeWGP的好处,这表明它在收敛速度和计算时间方面始终优于Laplace的近似值PBO。我们还表明,我们的框架可以扩展以处理混合优先类别类别的BO,其中二进制判断(有效或非valid)以及优先判断。

Preferential Bayesian optimisation (PBO) deals with optimisation problems where the objective function can only be accessed via preference judgments, such as "this is better than that" between two candidate solutions (like in A/B tests or recommender systems). The state-of-the-art approach to PBO uses a Gaussian process to model the preference function and a Bernoulli likelihood to model the observed pairwise comparisons. Laplace's method is then employed to compute posterior inferences and, in particular, to build an appropriate acquisition function. In this paper, we prove that the true posterior distribution of the preference function is a Skew Gaussian Process (SkewGP), with highly skewed pairwise marginals and, thus, show that Laplace's method usually provides a very poor approximation. We then derive an efficient method to compute the exact SkewGP posterior and use it as surrogate model for PBO employing standard acquisition functions (Upper Credible Bound, etc.). We illustrate the benefits of our exact PBO-SkewGP in a variety of experiments, by showing that it consistently outperforms PBO based on Laplace's approximation both in terms of convergence speed and computational time. We also show that our framework can be extended to deal with mixed preferential-categorical BO, where binary judgments (valid or non-valid) together with preference judgments are available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源