论文标题

ECG通过在线稀疏字典和时间金字塔匹配来击败分类

ECG beats classification via online sparse dictionary and time pyramid matching

论文作者

Li, Nanyu, Si, Yujuan, Deng, Duo, Yuan, Chunyu

论文摘要

最近,词袋(BOON)算法提供了有效的功能,并促进了ECG分类系统的准确性。但是,Bow算法有两个缺点:(1)。它具有较大的量化错误和不良的重建性能; (2)。它失去了心跳的时间信息,并可能为各种心跳带来混乱的功能。此外,可以长时间监测和分析心血管患者的ECG分类系统,而将生成大量数据,因此我们迫切需要有效的压缩算法。鉴于上述问题,我们使用小波功能来构建稀疏字典,该字典将量化误差降低到最低。为了降低我们的算法的复杂性并适应大规模的心跳操作,我们将在线词典学习与功能 - 符号算法相结合以更新字典和系数。系数矩阵用于表示ECG Beats,这大大降低了内存消耗,并同时解决了定量误差的问题。最后,我们构建了金字塔以匹配每个ECG节拍的系数。因此,我们获得了按随机池进行包含节拍时间信息的功能。解决丢失时间信息的问题是有效的。实验结果表明:一方面,提出的算法具有弓的高重建性能的优点,这种存储方法是高保真和低记忆消耗;另一方面,我们的算法在ECG BEATS分类中产生最高的精度。因此,此方法更适合大规模的心跳数据存储和分类。

Recently, the Bag-Of-Word (BOW) algorithm provides efficient features and promotes the accuracy of the ECG classification system. However, BOW algorithm has two shortcomings: (1). it has large quantization errors and poor reconstruction performance; (2). it loses heart beat's time information, and may provide confusing features for different kinds of heart beats. Furthermore, ECG classification system can be used for long time monitoring and analysis of cardiovascular patients, while a huge amount of data will be produced, so we urgently need an efficient compression algorithm. In view of the above problems, we use the wavelet feature to construct the sparse dictionary, which lower the quantization error to a minimum. In order to reduce the complexity of our algorithm and adapt to large-scale heart beats operation, we combine the Online Dictionary Learning with Feature-sign algorithm to update the dictionary and coefficients. Coefficients matrix is used to represent ECG beats, which greatly reduces the memory consumption, and solve the problem of quantitative error simultaneously. Finally, we construct the pyramid to match coefficients of each ECG beat. Thus, we obtain the features that contain the beat time information by time stochastic pooling. It is efficient to solve the problem of losing time information. The experimental results show that: on the one hand, the proposed algorithm has advantages of high reconstruction performance for BOW, this storage method is high fidelity and low memory consumption; on the other hand, our algorithm yields highest accuracy in ECG beats classification; so this method is more suitable for large-scale heart beats data storage and classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源