论文标题
在复合代码和双半半之间的过渡中,$ u(1)$ u(1)$级理论的证据
Evidence for deconfined $U(1)$ gauge theory at the transition between toric code and double semion
论文作者
论文摘要
在量子蒙特卡洛模拟的基础上,我们研究了二维和拓扑伊斯林在二维中的一参数hamiltonian插值的相图,这对福利码和双半数是双重的。我们发现一个带有条纹顺序的中间相,该阶段会自发打破保护对称性。值得注意的是,我们发现证据表明,由于条纹模式的不可通信性,这一中间阶段是无间隙的,并且对表现出cantor deconfinect的$ u(1)$量规理论是双重的。
Building on quantum Monte Carlo simulations, we study the phase diagram of a one-parameter Hamiltonian interpolating between trivial and topological Ising paramagnets in two dimensions, which are dual to the toric code and the double semion. We discover an intermediate phase with stripe order which spontaneously breaks the protecting Ising symmetry. Remarkably, we find evidence that this intervening phase is gapless due to the incommensurability of the stripe pattern and that it is dual to a $U(1)$ gauge theory exhibiting Cantor deconfinement.