论文标题
第一原理研究对膝盖和LAA的热电特性的应变效应
First-Principles Study of Strain Effect on Thermoelectric Properties of LaP and LaAs
论文作者
论文摘要
稀有地球剂因其对潜在设备应用的不寻常的电子和拓扑特性而引起了很多关注。在这里,我们通过密度功能理论(DFT)模拟研究了岩石盐结构化的灯笼单斑鼠(x = p,AS)。我们系统地表明,与剪刀校正结合使用的元gGA功能可以有效,准确地计算出精细的DFT $ k $ grid上的电子结构,这对于收敛的热电计算是必不可少的。我们还表明,应变工程可以有效地改善热电性能。在2%拉伸应变和载体浓度的最佳状态下,$ n = 3 \ times10^{20}〜\ textrm {cm}^{ - 3} $,在温度下,1200 k处的圈子可以实现优点$ zt $ al y $> 2 $的数字,与未经验证的值相比,这一数字增长了90%。随着载体掺杂和应变工程的影响,灯笼单媒体剂因此可能是有希望的高温热电材料。
Rare-earth monopnictides have attracted much attention due to their unusual electronic and topological properties for potential device applications. Here, we study rock-salt structured lanthanum monopnictides LaX (X = P, As) by density functional theory (DFT) simulations. We show systematically that a meta-GGA functional combined with scissor correction can efficiently and accurately compute electronic structures on a fine DFT $k$-grid, which is necessary for converging thermoelectric calculations. We also show that strain engineering can effectively improve thermoelectric performance. Under the optimal condition of 2% tensile strain and carrier concentration $n=3\times10^{20}~\textrm{cm}^{-3}$, LaP at temperature 1200 K can achieve a figure of merit $ZT$ value $>2$, which is enhanced by 90% compared to the unstrained value. With carrier doping and strain engineering, lanthanum monopnictides thereby could be promising high-temperature thermoelectric materials.