论文标题

在胸部X光片上对COVID-19空域疾病的自动检测和量化:一种新的方法,使用对基于CT基于CT的地面真实的数字重建X光片(DRR)训练的CNN实现放射科医生级的性能

Automated detection and quantification of COVID-19 airspace disease on chest radiographs: A novel approach achieving radiologist-level performance using a CNN trained on digital reconstructed radiographs (DRRs) from CT-based ground-truth

论文作者

Barbosa Jr., Eduardo Mortani, Gefter, Warren B., Yang, Rochelle, Ghesu, Florin C., Liu, Siqi, Mailhe, Boris, Mansoor, Awais, Grbic, Sasa, Piat, Sebastian, Chabin, Guillaume, S., Vishwanath R, Balachandran, Abishek, Vogt, Sebastian, Ziebandt, Valentin, Kappler, Steffen, Comaniciu, Dorin

论文摘要

目的:要利用源自上等模态(CT)的空域疾病(AD)的体积定量,该模态(CT)作为地面真理,将投影到数字重建的X光片(DRR)上介绍至:1)训练卷积神经网络以对配对CXRS上的空域疾病量化空间疾病; 2)将经过DRR培训的CNN与确认的COVID患者的CXR评估中的专家读者进行比较。 材料和方法:从2020年3月3日至5月至5月在美国东北部的一家三级医院开始,我们回顾性地选择了86名Covid-19患者(带有RT-PCR阳性)的队列,他们在48小时内接受了胸部CT和CXR。 COVID-19相关AD(POV)的地面真实体积百分比是通过在CT上的手动AD分段建立的。将最终的3D口罩投影到2​​D前后数字重建的X光片(DRR)中,以计算基于区域的AD百分比(POA)。卷积神经网络(CNN)经过由COVID-19和非covid-19患者的大规模CT数据集产生的DRR图像训练,自动分割肺,AD和CXR上的POA量化POA。通过计算相关性和平均绝对误差,将CNN POA结果与由两名专家读者和POV地面真相对CXR进行了量化的POA进行了比较。 结果:Bootstrap平均误差(MAE)和POA和POV之间的相关性为11.98%[11.05%-12.47%]和0.77 [0.70-0.82]的专家读者的平均值为9.56%-9.56%-9.78%[8.83%-10.22%]和0.78-0.81 [8.83%-10.22%]和0.78-0.81 [0.78-0.81 [0.73-0] [0.73-0.85]。 结论:我们使用CT衍生的空域定量对DRR进行了训练的CNN,在COVID-19的RT-PCR阳性的患者中,在CXR上实现了PRICE Sadiogist在COXR上的准确性水平。

Purpose: To leverage volumetric quantification of airspace disease (AD) derived from a superior modality (CT) serving as ground truth, projected onto digitally reconstructed radiographs (DRRs) to: 1) train a convolutional neural network to quantify airspace disease on paired CXRs; and 2) compare the DRR-trained CNN to expert human readers in the CXR evaluation of patients with confirmed COVID-19. Materials and Methods: We retrospectively selected a cohort of 86 COVID-19 patients (with positive RT-PCR), from March-May 2020 at a tertiary hospital in the northeastern USA, who underwent chest CT and CXR within 48 hrs. The ground truth volumetric percentage of COVID-19 related AD (POv) was established by manual AD segmentation on CT. The resulting 3D masks were projected into 2D anterior-posterior digitally reconstructed radiographs (DRR) to compute area-based AD percentage (POa). A convolutional neural network (CNN) was trained with DRR images generated from a larger-scale CT dataset of COVID-19 and non-COVID-19 patients, automatically segmenting lungs, AD and quantifying POa on CXR. CNN POa results were compared to POa quantified on CXR by two expert readers and to the POv ground-truth, by computing correlations and mean absolute errors. Results: Bootstrap mean absolute error (MAE) and correlations between POa and POv were 11.98% [11.05%-12.47%] and 0.77 [0.70-0.82] for average of expert readers, and 9.56%-9.78% [8.83%-10.22%] and 0.78-0.81 [0.73-0.85] for the CNN, respectively. Conclusion: Our CNN trained with DRR using CT-derived airspace quantification achieved expert radiologist level of accuracy in the quantification of airspace disease on CXR, in patients with positive RT-PCR for COVID-19.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源