论文标题

与DFT+DMFT相关材料的有效晶格动力学计算

Efficient lattice dynamics calculations for correlated materials with DFT+DMFT

论文作者

Koçer, Can P., Haule, Kristjan, Pascut, G. Lucian, Monserrat, Bartomeu

论文摘要

声子对于许多材料特性,包括热和电子传输,超导性和结构稳定性至关重要。在这里,我们描述了一种使用最先进的DFT+DMFT计算来计算相关材料中声子的方法。我们的方法结合了强大的DFT+DMFT实现,以使用非基因测量超级电池的直接方法来计算力。非对角线而不是对角线超级电池的使用大大降低了与DFT+DMFT计算相关的计算费用。我们基于典型相关材料的方法(Fe,Nio,Mno,Srvo $ _3 $),测试$ \ Mathbf {Q} $ - 点网格收敛和DFT+DMFT计算的不同计算参数。非对角线超级电池方法的效率使我们能够访问$ \ mathbf {q} $ - 点网格最多为$ 6 \ times6 \ times6 $。此外,我们发现,对于在晶格动力学计算中原子的小位移而言,在许多情况下,将自能源固定到平衡构型的自我能源上是一个极好的近似值,可以进一步降低DFT+DMFT计算的成本。对于不接近相变的材料,预计这种固定的自能量近似将容纳。总体而言,我们的工作为使用DFT+DMFT计算声子提供了一种有效而通用的方法,为研究晶格动力学和相关材料中的相关现象开辟了许多可能性。

Phonons are fundamentally important for many materials properties, including thermal and electronic transport, superconductivity, and structural stability. Here, we describe a method to compute phonons in correlated materials using state-of-the-art DFT+DMFT calculations. Our approach combines a robust DFT+DMFT implementation to calculate forces with the direct method for lattice dynamics using nondiagonal supercells. The use of nondiagonal instead of diagonal supercells drastically reduces the computational expense associated with the DFT+DMFT calculations. We benchmark the method for typical correlated materials (Fe, NiO, MnO, SrVO$_3$), testing for $\mathbf{q}$-point grid convergence and different computational parameters of the DFT+DMFT calculations. The efficiency of the nondiagonal supercell method allows us to access $\mathbf{q}$-point grids of up to $6\times6\times6$. In addition, we discover that for the small displacements that atoms are subject to in the lattice dynamics calculation, fixing the self-energy to that of the equilibrium configuration is in many cases an excellent approximation that further reduces the cost of the DFT+DMFT calculations. This fixed self-energy approximation is expected to hold for materials that are not close to a phase transition. Overall, our work provides an efficient and general method for the calculation of phonons using DFT+DMFT, opening many possibilities for the study of lattice dynamics and associated phenomena in correlated materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源