论文标题
具有半小列表尺寸的颜色两分图
Coloring bipartite graphs with semi-small list size
论文作者
论文摘要
最近,Alon,Cambie和Kang引入了两分图的不对称列表着色,每个顶点列表的大小都取决于其部分。对于完整的双分图,我们固定了一个部分的列表大小,并考虑由此产生的渐近图,从而揭示了不变的数量在确定大多数参数空间的可选性方面具有重要功能。通过将该数量连接到独立的超图集上的一个简单问题,当零件具有列表2的尺寸2时,我们会加强界限。最后,我们通过框架在一般的两部分图上进行猜想,统一了Alon-Cambie-Kang的三个猜想。
Recently, Alon, Cambie, and Kang introduced asymmetric list coloring of bipartite graphs, where the size of each vertex's list depends on its part. For complete bipartite graphs, we fix the list sizes of one part and consider the resulting asymptotics, revealing an invariant quantity instrumental in determining choosability across most of the parameter space. By connecting this quantity to a simple question on independent sets of hypergraphs, we strengthen bounds when a part has list size 2. Finally, we state via our framework a conjecture on general bipartite graphs, unifying three conjectures of Alon-Cambie-Kang.