论文标题
线性霍奇 - 纽顿分解及其应用
Linear Hodge-Newton decomposition and its applications
论文作者
论文摘要
首先,我们提供了嗡嗡声和卡莱加里(Calegari)在过度会议的2-辅助模块化形式的斜率上的工作中重要的引理的不同证明,这是通过非架构的线性霍奇·纽顿(Hodge-Newton)分解。引理表明,在适当条件下,在阿基米德场中的整数环中具有系数的两个等效矩阵具有相同的牛顿多边形。其次,我们给出上述引理的阿基米德类似物。
Firstly, we provide a different proof of an important lemma in Buzzard and Calegari's work on slopes of overconvergent 2-adic modular forms via nonarchimedean linear Hodge-Newton decomposition. The lemma shows that two equivalent matrices with coefficients in the ring of integers in an archimedean field have the same Newton polygon under suitable conditions. Secondly, we give an archimedean analogue of the above lemma.