论文标题
自行车纵向运动建模
Bicycle Longitudinal Motion Modeling
论文作者
论文摘要
这项研究工作使用车辆交通流量技术来对骑自行车的纵向运动进行建模,同时考虑自行车相互作用。具体而言,Fadhloun-rakha(FR)模型是现有的遵循模型,将其重新构成模型骑自行车的人。最初,该研究使用从两个环道自行车实验中收集的实验数据集评估了所提出的模型公式的性能。该模型于2012年在德国进行了一次,该模型的验证是通过研究和比较拟议的模型输出与从两个最先进模型获得的模型的验证的,即:必要的减速模型(NDM),该模型是一种专门旨在捕获自行车赛车手的漫长运动的模型;以及智能驾驶员模型,这是一种适用于汽车的模型,被证明适用于单文件自行车交通。通过定量和定性评估,提出的模型公式被证明可以产生与其他两个模型一致的建模误差。尽管这三个模型都会产生与经验观察到的自行车跟随行为一致的轨迹,但只有所提出的模型才能对骑自行车的物理特征和道路环境进行明确而直接的调整。灵敏度分析证明了改变不同模型参数对产生的轨迹的影响,突出了所提出模型的鲁棒性和一般性。
This research effort uses vehicular traffic flow techniques to model bicyclist longitudinal motion while accounting for bicycle interactions. Specifically, an existing car-following model, the Fadhloun-Rakha (FR) model is re-parametrized to model bicyclists. Initially, the study evaluates the performance of the proposed model formulation using experimental datasets collected from two ring-road bicycle experiments; one conducted in Germany in 2012, and the second in China in 2016. The validation of the model is achieved through investigating and comparing the proposed model outputs against those obtained from two state-of-the-art models, namely: the Necessary Deceleration Model (NDM), which is a model specifically designed to capture the longitudinal motion of bicyclists; and the Intelligent Driver Model, which is a car-following model that was demonstrated to be suitable for single-file bicycle traffic. Through a quantitative and qualitative evaluation, the proposed model formulation is demonstrated to produce modeling errors that are consistent with the other two models. While all three models generate trajectories that are consistent with empirically observed bicycle-following behavior, only the proposed model allows for an explicit and straightforward tuning of the bicyclist physical characteristics and the road environment. A sensitivity analysis, demonstrates the effect of varying the different model parameters on the produced trajectories, highlighting the robustness and generality of the proposed model.