论文标题

旋转爆炸波的数据驱动建模

Data-driven Modeling of Rotating Detonation Waves

论文作者

Mendible, Ariana, Koch, James, Lange, Henning, Brunton, Steven L., Kutz, J. Nathan

论文摘要

直接监视旋转爆炸引擎(RDE)燃烧室,使燃烧前动力学的观察能够观察到由许多共同和/或反旋转的相干冲击波组成的,其非线性模式模式行为表现出分歧和不理解的能力,而这些锁定行为表现出尚未充分理解。计算流体动力学模拟在表征RDE反应性,可压缩流的动力学方面无处不在。当考虑多个发动机几何形状,不同的工作条件以及模式锁定相互作用的长期动力学时,此类仿真价格昂贵。减少阶模型(ROM)提供了一个非常有启用的模拟框架,因为它们在数据中利用低级结构以最大程度地降低计算成本并允许快速参数化研究和长期模拟。但是,ROM天生受到RDE中存在的燃烧波体现的翻译不变的限制。在这项工作中,我们利用机器学习算法来发现数据被转移到其中的移动坐标框架,从而克服了RDE的基本翻译不变性施加的限制,并允许应用传统的降低降低技术。我们探索了各种数据驱动的ROM策略,以表征RDE中复杂的冲击波动力学和相互作用。具体而言,我们采用动态模式分解和深度的Koopman嵌入来提供新的建模见解和对RDE中燃烧波相互作用的理解。

The direct monitoring of a rotating detonation engine (RDE) combustion chamber has enabled the observation of combustion front dynamics that are composed of a number of co- and/or counter-rotating coherent traveling shock waves whose nonlinear mode-locking behavior exhibit bifurcations and instabilities which are not well understood. Computational fluid dynamics simulations are ubiquitous in characterizing the dynamics of RDE's reactive, compressible flow. Such simulations are prohibitively expensive when considering multiple engine geometries, different operating conditions, and the long-time dynamics of the mode-locking interactions. Reduced-order models (ROMs) provide a critically enabling simulation framework because they exploit low-rank structure in the data to minimize computational cost and allow for rapid parameterized studies and long-time simulations. However, ROMs are inherently limited by translational invariances manifest by the combustion waves present in RDEs. In this work, we leverage machine learning algorithms to discover moving coordinate frames into which the data is shifted, thus overcoming limitations imposed by the underlying translational invariance of the RDE and allowing for the application of traditional dimensionality reduction techniques. We explore a diverse suite of data-driven ROM strategies for characterizing the complex shock wave dynamics and interactions in the RDE. Specifically, we employ the dynamic mode decomposition and a deep Koopman embedding to give new modeling insights and understanding of combustion wave interactions in RDEs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源