论文标题

DSG-NET:3D形状生成的学习解剖结构和几何形状

DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape Generation

论文作者

Yang, Jie, Mo, Kaichun, Lai, Yu-Kun, Guibas, Leonidas J., Gao, Lin

论文摘要

D Shape Generation是计算机图形中的基本操作。尽管已经取得了重大进展,尤其是在最近的深层生成模型中,但要以可控制的方式综合具有丰富的几何细节和复杂结构的高质量形状的挑战。为了解决这个问题,我们介绍了DSG-NET,这是一个深层神经网络,该网络学习了3D形状的分离结构化和几何网格表示形式,其中形状,几何和结构的两个关键方面是以协同的方式编码的,以确保生成形状的合理性,同时也不列出了尽可能不列入生成形状的合理性。这支持具有分离控制的一系列新型形状生成应用,例如结构插值(几何),同时保持几何(结构)不变。为了实现这一目标,我们以分层的方式通过变异自动编码器(VAE)同时学习结构和几何形状,并在每个级别上使用肉类映射。通过这种方式,我们有效地在不同的潜在空间中编码几何和结构,同时确保它们的兼容性:结构用于引导几何形状,反之亦然。在叶片级别,使用条件零件VAE表示部分几何形状,以编码以结构上下文为条件的高质量几何细节。我们的方法不仅支持可控的生成应用程序,还支持高质量的合成形状,表现优于最先进的方法。该代码已在https://github.com/iglict/dsg-net上发布。

D shape generation is a fundamental operation in computer graphics. While significant progress has been made, especially with recent deep generative models, it remains a challenge to synthesize high-quality shapes with rich geometric details and complex structure, in a controllable manner. To tackle this, we introduce DSG-Net, a deep neural network that learns a disentangled structured and geometric mesh representation for 3D shapes, where two key aspects of shapes, geometry, and structure, are encoded in a synergistic manner to ensure plausibility of the generated shapes, while also being disentangled as much as possible. This supports a range of novel shape generation applications with disentangled control, such as interpolation of structure (geometry) while keeping geometry (structure) unchanged. To achieve this, we simultaneously learn structure and geometry through variational autoencoders (VAEs) in a hierarchical manner for both, with bijective mappings at each level. In this manner, we effectively encode geometry and structure in separate latent spaces, while ensuring their compatibility: the structure is used to guide the geometry and vice versa. At the leaf level, the part geometry is represented using a conditional part VAE, to encode high-quality geometric details, guided by the structure context as the condition. Our method not only supports controllable generation applications but also produces high-quality synthesized shapes, outperforming state-of-the-art methods. The code has been released at https://github.com/IGLICT/DSG-Net.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源