论文标题
推断第一通道过程的现象学模型
Inferring phenomenological models of first passage processes
论文作者
论文摘要
细胞中的生化过程由许多化学物种的复杂网络控制,以各种方式和不同的时间尺度随机相互作用。构建此类网络的显微精确模型通常是不可行的。取而代之的是,在这里,我们提出了一个系统的框架,用于从实验数据中构建此类网络的现象学模型,重点是准确近似完成该过程所需的时间,即第一个段落(FP)时间。我们的现象学模型是具有天然生物物理解释的伽马分布的混合物。自动调整模型的复杂性,以说明可用数据的数量及其时间分辨率。该框架可用于预测不同外部条件下各种FP系统的行为。为了证明该方法的实用性,我们从实验和模拟数据中构建了用于形态上复杂神经元(浦肯野细胞)的尖峰间间隔的模型。我们证明,开发的模型不仅可以符合数据,还可以做出非平凡的预测。我们证明了我们的粗粒模型对涉及现象的更机械精确的模型提供了约束。
Biochemical processes in cells are governed by complex networks of many chemical species interacting stochastically in diverse ways and on different time scales. Constructing microscopically accurate models of such networks is often infeasible. Instead, here we propose a systematic framework for building phenomenological models of such networks from experimental data, focusing on accurately approximating the time it takes to complete the process, the First Passage (FP) time. Our phenomenological models are mixtures of Gamma distributions, which have a natural biophysical interpretation. The complexity of the models is adapted automatically to account for the amount of available data and its temporal resolution. The framework can be used for predicting the behavior of various FP systems under varying external conditions. To demonstrate the utility of the approach, we build models for the distribution of inter-spike intervals of a morphologically complex neuron, a Purkinje cell, from experimental and simulated data. We demonstrate that the developed models can not only fit the data but also make nontrivial predictions. We demonstrate that our coarse-grained models provide constraints on more mechanistically accurate models of the involved phenomena.