论文标题
色散CFT和规则
Dispersive CFT Sum Rules
论文作者
论文摘要
我们在共形场理论中为四点相关因子提供了统一的处理总和规则。如果在固定的扭转缝隙上方的所有双扭操作员上都有双重扭转操作员,则我们将其称为“总规则”色散。分散总和规则在洛伦兹运动学和吸收物理学(双重不连续性的概念)中具有其概念起源。已经使用三种看似不同的方法对它们进行了讨论:分析功能至双扭操作员双重扭转,位置空间中的分散关系以及梅林空间中的分散关系。我们证明,这三种方法可以互相映射并导致完全等效的总和规则。我们讨论的一个核心思想是将相关因子作为Polyakov-Regge块的总和。与通常的OPE总和不同,Polyakov-Regge扩展利用了两个单独的通道的数据,而(按期限)在第三个通道中具有良好的regge行为。我们构建高于双扭差距以上的非负数的总和规则;他们对超级授权总和的减去版本具有物理解释。我们预计,分散总和规则将成为研究平均场理论扩展的非常有用的工具,并以较大的间隙来限制全息CFT的低能描述。我们举例说明了第一种应用的示例,尤其是我们在旋转两个差距问题上表现出候选的极端功能。
We give a unified treatment of dispersive sum rules for four-point correlators in conformal field theory. We call a sum rule dispersive if it has double zeros at all double-twist operators above a fixed twist gap. Dispersive sum rules have their conceptual origin in Lorentzian kinematics and absorptive physics (the notion of double discontinuity). They have been discussed using three seemingly different methods: analytic functionals dual to double-twist operators, dispersion relations in position space, and dispersion relations in Mellin space. We show that these three approaches can be mapped into one another and lead to completely equivalent sum rules. A central idea of our discussion is a fully nonperturbative expansion of the correlator as a sum over Polyakov-Regge blocks. Unlike the usual OPE sum, the Polyakov-Regge expansion utilizes the data of two separate channels, while having (term by term) good Regge behavior in the third channel. We construct sum rules which are non-negative above the double-twist gap; they have the physical interpretation of a subtracted version of superconvergence sum rules. We expect dispersive sum rules to be a very useful tool to study expansions around mean-field theory, and to constrain the low-energy description of holographic CFTs with a large gap. We give examples of the first kind of applications, notably, we exhibit a candidate extremal functional for the spin-two gap problem.