论文标题

2315 Pan-Starrs1超新星的光度分类与超杆

Photometric Classification of 2315 Pan-STARRS1 Supernovae with Superphot

论文作者

Hosseinzadeh, Griffin, Dauphin, Frederick, Villar, V. Ashley, Berger, Edo, Jones, David O., Challis, Peter, Chornock, Ryan, Drout, Maria R., Foley, Ryan J., Kirshner, Robert P., Lunnan, Ragnhild, Margutti, Raffaella, Milisavljevic, Dan, Pan, Yen-Chen, Rest, Armin, Scolnic, Daniel M., Magnier, Eugene, Metcalfe, Nigel, Wainscoat, Richard, Waters, Christopher

论文摘要

传统上,超新星(SNE)的分类及其对我们对爆炸物理学和祖细胞的理解的影响是基于某些光谱特征的存在或不存在。但是,当前和即将进行的广场时间域调查已提高了瞬态发现率,远远超出了我们甚至获得每个新事件的能力的能力。因此,我们必须在很大程度上依赖于光度分类,将SN光曲线与光谱定义的类连接回。在这里,我们介绍了Superphot,这是Villar等人的机器学习分类算法的开源Python实现,并将其应用于Pan-Starrs1中等深度调查的2315个以前未分类的瞬变,我们为此我们获得了光谱型宿主宿主 - 宿主 - 及时式红色速度。我们的分类器的总体准确性为82%,最佳类别的完整性和纯度> 80%(SNE IA和Superluminous SNE)。对于表现最差的SN类(SNE IBC),完整性和纯度分别下降到37%和21%。我们的分类器提供了1257个新分类IA,521 SNE II,298 SNE IBC,181 SNE IIN和58 SLSNE。这些是文献中最大的统一观察到的SNE样本之一,将对每个类别进行广泛的统计研究。

The classification of supernovae (SNe) and its impact on our understanding of the explosion physics and progenitors have traditionally been based on the presence or absence of certain spectral features. However, current and upcoming wide-field time-domain surveys have increased the transient discovery rate far beyond our capacity to obtain even a single spectrum of each new event. We must therefore rely heavily on photometric classification, connecting SN light curves back to their spectroscopically defined classes. Here we present Superphot, an open-source Python implementation of the machine-learning classification algorithm of Villar et al., and apply it to 2315 previously unclassified transients from the Pan-STARRS1 Medium Deep Survey for which we obtained spectroscopic host-galaxy redshifts. Our classifier achieves an overall accuracy of 82%, with completenesses and purities of >80% for the best classes (SNe Ia and superluminous SNe). For the worst performing SN class (SNe Ibc), the completeness and purity fall to 37% and 21%, respectively. Our classifier provides 1257 newly classified SNe Ia, 521 SNe II, 298 SNe Ibc, 181 SNe IIn, and 58 SLSNe. These are among the largest uniformly observed samples of SNe available in the literature and will enable a wide range of statistical studies of each class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源